zoukankan      html  css  js  c++  java
  • 《DSP using MATLAB》Problem 3.9

    利用的频移性质为:

    本习题代码:

    %% ------------------------------------------------------------------------
    %%            Output Info about this m-file
    fprintf('
    ***********************************************************
    ');
    fprintf('        <DSP using MATLAB> Problem 3.9 
    
    ');
    
    banner();
    %% ------------------------------------------------------------------------
    
    % -----------------------------------------------------------
    %                Rectangle Window sequence, and its DTFT
    % -----------------------------------------------------------
    %M = 5;
    %M = 15;
    %M = 25;
    M = 100;
    
    n1_start = 0; n1_end = M;
    n1 = [n1_start : n1_end - 1]; 
    
    x1 =  ones(1, length(n1)); 
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 x1(n) Rectangle, M = %d',M));
    set(gcf,'Color','white'); 
    stem(n1, x1); 
    xlabel('n'); ylabel('x1');  
    title(sprintf('x1(n) sequence, M = %d', M)); grid on;
    
    MM = 500;
    k = [-MM:MM];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/MM) * k;
    
    [X1] = dtft(x1, n1, w);                            
    
    magX1 = abs(X1); angX1 = angle(X1); realX1 = real(X1); imagX1 = imag(X1);
    
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 DTFT of Rm(n), M = %d', M)); 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX1); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX1); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 Real and Imag of X1(w), M = %d', M)); 
    set(gcf,'Color','white');
    subplot('2,1,1'); plot(w/pi, realX1); grid on;
    title('Real Part of X1(w)');
    xlabel('frequency in pi units'); ylabel('Real');
    subplot('2,1,2'); plot(w/pi, imagX1); grid on;
    title('Imaginary Part of X1(w)');
    xlabel('frequency in pi units'); ylabel('Imaginary');
    
    
    %% ----------------------------------------------------------------
    %%                 x(n)=cos(w0*n)Rm(n), and its DTFT  
    %% ----------------------------------------------------------------
    n2 = n1;
    w0 = 0.5 * pi;
    
    x2 = cos(w0*n2) .* x1;
    %x2 = exp(j*w0*n2) .* x1;
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 x2(n), M = %d', M));
    set(gcf,'Color','white'); 
    stem(n2, x2); 
    xlabel('n2'); ylabel('x2');  
    title(sprintf('x1(n)*Rm(n) sequence, M = %d', M)); grid on;
    
    MM = 500;
    k = [-MM:MM];        % [-pi, pi]
    %k = [0:M];        % [0, pi]
    w = (pi/MM) * k;
    
    [X2] = dtft(x2, n2, w);                            
    
    magX2 = abs(X2); angX2 = angle(X2); realX2 = real(X2); imagX2 = imag(X2);
    
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 DTFT of x2(n), M = %d', M)); 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, magX2); grid on; 
    title('Magnitude Part');
    xlabel('frequency in pi units'); ylabel('Magnitude'); 
    subplot(2,1,2); plot(w/pi, angX2); grid on;
    title('Angle Part');
    xlabel('frequency in pi units'); ylabel('Radians');
    
    figure('NumberTitle', 'off', 'Name', sprintf('Problem 3.9 Real and Imag of X2(w), M = %d', M)); 
    set(gcf,'Color','white');
    subplot(2,1,1); plot(w/pi, realX2); grid on;
    title('Real Part of X2(w)');
    xlabel('frequency in pi units'); ylabel('Real');
    subplot(2,1,2); plot(w/pi, imagX2); grid on;
    title('Imaginary Part of X2(w)');
    xlabel('frequency in pi units'); ylabel('Imaginary');
    
    
    %% --------------------------------------------------------------
    %%              Direct equation
    %% --------------------------------------------------------------
    Real_X_direct = 0.5 * cos( (w/pi-w0) * (M-1) / 2) * ( sin( (w/pi-w0)*M/2 ) / sin( (w/pi-w0)/2 ) ) + 0.5 * cos( (w/pi+w0) * (M-1) / 2) * ( sin( (w/pi-(2*pi-w0))*M/2 ) / sin( (w/pi-(2*pi-w0))/2) );
    
    check = sum(abs(realX2)-abs(Real_X_direct))
    
    
    
    
    figure('NumberTitle', 'off', 'Name', 'Problem 3.9 Direct')
    set(gcf,'Color',[1,1,1])                  % 改变坐标外围背景颜色
    plot(w/pi, Real_X_direct); title('Real Part obtained by direct equation');
    xlabel('n'); ylabel('Real[x(n)]') ;
    grid on;
    

      运行结果:

          1、方波窗序列,本题中正弦序列,以及各自DTFT;

            2、谱的实部和虚部;

            因为ω0=0.5π,根据频移性质,相当于沿着ω轴谱搬移了0.5π(注意到DTFT是以2π为周期的,图中显示的是[-π,π])。

    牢记: 1、如果你决定做某事,那就动手去做;不要受任何人、任何事的干扰。2、这个世界并不完美,但依然值得我们去为之奋斗。
  • 相关阅读:
    json对象字符串互转
    git stash压栈
    Array、ArrayList和List三者的区别
    弱类型dynamic与var
    使用git初始化项目
    git本地分支关联远程分支
    mysql索引
    js中 var functionName = function() {} 和 function functionName() {} 两种函数声明的区别
    深入理解JavaScript中的this关键字
    c#读取xml文件
  • 原文地址:https://www.cnblogs.com/ky027wh-sx/p/8168653.html
Copyright © 2011-2022 走看看