zoukankan      html  css  js  c++  java
  • Java数据结构之TreeMap

    一、源码注释

    /**
     * TreeMap基于NavigableMap 的一个红黑树的实现。TreeMap会根据比较器comparator对键值对的key进行比较进行排序,如果没有比较器就是用key的自然排序进行排序,这取决你用什么构造器
     * TreeMap为containsKey、get、put和remove操作提供了保证的log(n)时间开销。
     * 
     * TreeMap是非线程安全的,如果多个线程同时访问TreeMap,那必须在外部进行同步,以免出现线程安全问题。
     * 或者通过SortedMap m = Collections.synchronizedSortedMap(new TreeMap(...));来对TreeMap进行包装
     * 
     * 集合的视图方法返回的迭代器都是快速失败的,如果在创建迭代器后,任何时候对TreeMap的结构上的 修改(除非通过迭代器的删除方法),迭代器将抛出ConcurrentModificationException}。
     * 因此,在面对并发修改时,迭代器会快速而干净地失败,而不是在将来某个不确定的时间冒着任意的、不确定的行为的风险。、
     * 
     * 所有通过类的方法或者视图的到的 Map.Entry对不支持Entry.setValue 方法。(但是可以使用put更改关联映射中的映射。)
     * 
     * 
     * @author  Josh Bloch and Doug Lea
     * @see Map
     * @see HashMap
     * @see Hashtable
     * @see Comparable
     * @see Comparator
     * @see Collection
     * @since 1.2
     */
    
    public class TreeMap<K,V>
        extends AbstractMap<K,V>
        implements NavigableMap<K,V>, Cloneable, java.io.Serializable
    {
        /**
         * 比较器,用来对TreeMap中的节点进行排序,如果使用key的自然排序comparator就为null
         */
        private final Comparator<? super K> comparator;
    
        /**
         * 红黑树的根节点
         */
        private transient Entry<K,V> root;
    
        /**
         * 红黑树的节点总数
         */
        private transient int size = 0;
    
        /**
         * 结构化修改的次数
         */
        private transient int modCount = 0;
    
        /**
         * 默认的构造函数,比较器为null,说明按照自然排序
         */
        public TreeMap() {
            comparator = null;
        }
    
        /**
         * 使用比较器的构造函数
         */
        public TreeMap(Comparator<? super K> comparator) {
            this.comparator = comparator;
        }
    
        /**
         * 
         */
        public TreeMap(Map<? extends K, ? extends V> m) {
            comparator = null;
            putAll(m);
        }
    
        /**
         * 通过SortMap来创建TreeMap,SortMap中的key必须是可比较的,也就是实现了Comparable接口
         */
        public TreeMap(SortedMap<K, ? extends V> m) {
            comparator = m.comparator();
            try {
                buildFromSorted(m.size(), m.entrySet().iterator(), null, null);
            } catch (java.io.IOException cannotHappen) {
            } catch (ClassNotFoundException cannotHappen) {
            }
        }
    
    
        // Query Operations
    
        /**
         * 返回节点总个数
         */
        public int size() {
            return size;
        }
    
        /**
         * 是否包含该key
         */
        public boolean containsKey(Object key) {
            return getEntry(key) != null;
        }
    
        /**
         * 是否包含该value,遍历每个节点,然后去匹配是否存在该value
         */
        public boolean containsValue(Object value) {
            for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e))
                if (valEquals(value, e.value))
                    return true;
            return false;
        }
    
        /**
         * 返回key对应的value
         */
        public V get(Object key) {
            Entry<K,V> p = getEntry(key);
            return (p==null ? null : p.value);
        }
        //获取比较器
        public Comparator<? super K> comparator() {
            return comparator;
        }
    
        /**
         *  获取第一个key,如果TreeMap为空,则抛出异常
         */
        public K firstKey() {
            return key(getFirstEntry());
        }
    
        /**
         * 返回最后一个key
         */
        public K lastKey() {
            return key(getLastEntry());
        }
    
        /**
         * 将Map中的所有键值对添加到TreeMap中
         * 如果当前TreeMap中没有节点,并且传入map是SortedMap的实现,并且比较器也一样,这时候直接将map中的键值对拷贝到TreeMap中
         * 否则就循环添加键值对
         */
        public void putAll(Map<? extends K, ? extends V> map) {
            int mapSize = map.size();
            if (size==0 && mapSize!=0 && map instanceof SortedMap) {
                Comparator<?> c = ((SortedMap<?,?>)map).comparator();
                if (c == comparator || (c != null && c.equals(comparator))) {
                    ++modCount;
                    try {
                        buildFromSorted(mapSize, map.entrySet().iterator(),
                                        null, null);
                    } catch (java.io.IOException cannotHappen) {
                    } catch (ClassNotFoundException cannotHappen) {
                    }
                    return;
                }
            }
            super.putAll(map);
        }
    
        /**
         * 通过key获取节点。
         */
        final Entry<K,V> getEntry(Object key) {
            // Offload comparator-based version for sake of performance
            if (comparator != null)//存在比较器就通过比较器来进行查找
                return getEntryUsingComparator(key);
            if (key == null)//既没有比较器,此时key还为null就抛出异常
                throw new NullPointerException();
            @SuppressWarnings("unchecked")
                Comparable<? super K> k = (Comparable<? super K>) key;//最后看key是否是可比较的,来进行查找
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = k.compareTo(p.key);
                if (cmp < 0)
                    p = p.left;
                else if (cmp > 0)
                    p = p.right;
                else
                    return p;
            }
            return null;
        }
    
        /**
         *    使用比较器的getEntry版本。从getEntry中分离出来以获得性能。(对于不太依赖于比较器性能的大多数方法,这不值得这样做,但在这里是值得的。)
         */
        final Entry<K,V> getEntryUsingComparator(Object key) {
            @SuppressWarnings("unchecked")
                K k = (K) key;
            Comparator<? super K> cpr = comparator;
            if (cpr != null) {
                Entry<K,V> p = root;
                while (p != null) {
                    int cmp = cpr.compare(k, p.key);
                    if (cmp < 0)
                        p = p.left;
                    else if (cmp > 0)
                        p = p.right;
                    else
                        return p;
                }
            }
            return null;
        }
    
        /**
         * 返回大于等于key的最小的key所对应的节点
         */
        final Entry<K,V> getCeilingEntry(K key) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = compare(key, p.key);
                if (cmp < 0) {//如果要找的key小于当前节点就往左边找,
                    if (p.left != null)
                        p = p.left;
                    else
                        return p;//找到左节点都没有左节点了都没找到,那么该节点就是大于key的最小左节点
                } else if (cmp > 0) {
                    if (p.right != null) {
                        p = p.right;
                    } else {
                        Entry<K,V> parent = p.parent;
                        Entry<K,V> ch = p;
                        //能够进入这个循环说明当前节点没有右子节点,并且当前节点是父节点的右子节点,并且当前节点还小于查询的节点
                        //这样就只能找它的父节点来看,一直往上找,直到找到某个节点是其父节点的左节点,那个左节点是大于key的 最小节点
                        //如果往上找,父节点一直都是其父节点的右节点,直到找到root节点,然后返回null。说明没有比key大的节点
                        while (parent != null && ch == parent.right) {
                            ch = parent;
                            parent = parent.parent;
                        }
                        return parent;
                    }
                } else
                    return p;
            }
            return null;
        }
    
        /**
         * 返回小于等于key的最大的节点
         */
        final Entry<K,V> getFloorEntry(K key) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = compare(key, p.key);
                if (cmp > 0) {//key大于当前节点就往右边继续找
                    if (p.right != null)
                        p = p.right;
                    else
                        return p;//如果该节点没有右节点,并且此时key还大于当前节点,说明这个节点就是小于key的最大节点了
                } else if (cmp < 0) {//如果key小于当前节点
                    if (p.left != null) {//如果还有左节点,就继续往左边找
                        p = p.left;
                    } else {
                        //如果当前节点没有左节点了,那么只有两种情况,
                        //一种是当前节点是整个树的最小节点,那说明真个树都没有小于key的节点了,那么就找到root节点,返回root的父节点null
                        //另外一种的就是当前节点不是整个树的 最小节点,那么循环获取父节点的时候,如果某个节点是父节点的右子节点,说明这个该节点的 父节点就是要找的小于key的最大节点
                        Entry<K,V> parent = p.parent;
                        Entry<K,V> ch = p;
                        while (parent != null && ch == parent.left) {
                            ch = parent;
                            parent = parent.parent;
                        }
                        return parent;
                    }
                } else
                    return p;//等于key的节点
    
            }
            return null;
        }
    
        /**
         * 返回大于key的最小节点,如果没有就返回null。和getCeilingEntry一样,只是没有等于
         */
        final Entry<K,V> getHigherEntry(K key) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = compare(key, p.key);
                if (cmp < 0) {
                    if (p.left != null)
                        p = p.left;
                    else
                        return p;
                } else {
                    if (p.right != null) {
                        p = p.right;
                    } else {
                        Entry<K,V> parent = p.parent;
                        Entry<K,V> ch = p;
                        while (parent != null && ch == parent.right) {
                            ch = parent;
                            parent = parent.parent;
                        }
                        return parent;
                    }
                }
            }
            return null;
        }
    
        /**
         * 返回小于key的最大节点,没有就返回null。和getFloorEntry一样,只是没有等于
         */
        final Entry<K,V> getLowerEntry(K key) {
            Entry<K,V> p = root;
            while (p != null) {
                int cmp = compare(key, p.key);
                if (cmp > 0) {
                    if (p.right != null)
                        p = p.right;
                    else
                        return p;
                } else {
                    if (p.left != null) {
                        p = p.left;
                    } else {
                        Entry<K,V> parent = p.parent;
                        Entry<K,V> ch = p;
                        while (parent != null && ch == parent.left) {
                            ch = parent;
                            parent = parent.parent;
                        }
                        return parent;
                    }
                }
            }
            return null;
        }
    
        /**
         * 将键值对放入TreeMap中
         */
        public V put(K key, V value) {
            Entry<K,V> t = root;
            if (t == null) {//如果根节点为null,则将该节点设置为根节点
                compare(key, key); // type (and possibly null) check
    
                root = new Entry<>(key, value, null);
                size = 1;
                modCount++;
                return null;
            }
            int cmp;
            Entry<K,V> parent;
            // split comparator and comparable paths
            Comparator<? super K> cpr = comparator;
            if (cpr != null) {//如果有比较器,
                do {//找到key对应的节点,直接将新的值赋给key
                    parent = t;
                    cmp = cpr.compare(key, t.key);
                    if (cmp < 0)
                        t = t.left;
                    else if (cmp > 0)
                        t = t.right;
                    else
                        return t.setValue(value);
                } while (t != null);
            }
            else {//如果没有比较器,通过key的自身的比较性来进行比较
                if (key == null)
                    throw new NullPointerException();
                @SuppressWarnings("unchecked")
                    Comparable<? super K> k = (Comparable<? super K>) key;
                do {//找到key对应的节点,直接将新的值赋给key
                    parent = t;
                    cmp = k.compareTo(t.key);
                    if (cmp < 0)
                        t = t.left;
                    else if (cmp > 0)
                        t = t.right;
                    else
                        return t.setValue(value);
                } while (t != null);
            }//如果没有找到key对应的节点,就创建一个新的节点,加在父节点下
            Entry<K,V> e = new Entry<>(key, value, parent);
            if (cmp < 0)
                parent.left = e;
            else
                parent.right = e;
            fixAfterInsertion(e);//加入新的节点后,要对树重新进行整理,来满足红黑树的要求
            size++;
            modCount++;
            return null;
        }
    
        /**
         * 删除节点
         */
        public V remove(Object key) {
            Entry<K,V> p = getEntry(key);
            if (p == null)
                return null;
    
            V oldValue = p.value;
            deleteEntry(p);
            return oldValue;
        }
    
        /**
         * 清空整个TreeMap
         */
        public void clear() {
            modCount++;
            size = 0;
            root = null;
        }
    
        /**
         * 浅克隆
         */
        public Object clone() {
            TreeMap<?,?> clone;
            try {
                clone = (TreeMap<?,?>) super.clone();
            } catch (CloneNotSupportedException e) {
                throw new InternalError(e);
            }
    
            // Put clone into "virgin" state (except for comparator)
            clone.root = null;
            clone.size = 0;
            clone.modCount = 0;
            clone.entrySet = null;
            clone.navigableKeySet = null;
            clone.descendingMap = null;
    
            // Initialize clone with our mappings
            try {
                clone.buildFromSorted(size, entrySet().iterator(), null, null);
            } catch (java.io.IOException cannotHappen) {
            } catch (ClassNotFoundException cannotHappen) {
            }
    
            return clone;
        }
    
        // NavigableMap API methods
    
        /**
         * @since 1.6 返回第一个节点
         */
        public Map.Entry<K,V> firstEntry() {
            return exportEntry(getFirstEntry());
        }
    
        /**
         * @since 1.6 返回最后一个节点
         */
        public Map.Entry<K,V> lastEntry() {
            return exportEntry(getLastEntry());
        }
    
        /**
         * @since 1.6 返回并删除第一个节点
         */
        public Map.Entry<K,V> pollFirstEntry() {
            Entry<K,V> p = getFirstEntry();
            Map.Entry<K,V> result = exportEntry(p);
            if (p != null)
                deleteEntry(p);
            return result;
        }
    
        /**
         * @since 1.6 返回并删除最后一个节点
         */
        public Map.Entry<K,V> pollLastEntry() {
            Entry<K,V> p = getLastEntry();
            Map.Entry<K,V> result = exportEntry(p);
            if (p != null)
                deleteEntry(p);
            return result;
        }
    
        /**
         * 返回小于key的最大节点
         * @since 1.6
         */
        public Map.Entry<K,V> lowerEntry(K key) {
            return exportEntry(getLowerEntry(key));
        }
    
        /**
         * 返回小于key的最大的 key
         * @since 1.6
         */
        public K lowerKey(K key) {
            return keyOrNull(getLowerEntry(key));
        }
    
        /**
         * 返回小于等于key的最大节点
         */
        public Map.Entry<K,V> floorEntry(K key) {
            return exportEntry(getFloorEntry(key));
        }
    
        /**
         * 返回小于等于key的最大key
         * @since 1.6
         */
        public K floorKey(K key) {
            return keyOrNull(getFloorEntry(key));
        }
    
        /**
         * 返回大于等于key的最小节点
         * @since 1.6
         */
        public Map.Entry<K,V> ceilingEntry(K key) {
            return exportEntry(getCeilingEntry(key));
        }
    
        /**
         * 返回大于等于key的最小key
         * @since 1.6
         */
        public K ceilingKey(K key) {
            return keyOrNull(getCeilingEntry(key));
        }
    
        /**
         * 返回大于key的最小节点
         * @since 1.6
         */
        public Map.Entry<K,V> higherEntry(K key) {
            return exportEntry(getHigherEntry(key));
        }
    
        /**
         * 返回大于key的最小key
         * @since 1.6
         */
        public K higherKey(K key) {
            return keyOrNull(getHigherEntry(key));
        }
    
        // Views
    
        /**
         * 在第一次请求此视图时,创建这些视图。视图是无状态的,因此没有理由创建多个视图。
         */
        private transient EntrySet entrySet;
        private transient KeySet<K> navigableKeySet;
        private transient NavigableMap<K,V> descendingMap;
    
        /**
         * 返回key的Set集合,Set中的key按照升序排列
         * Set集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到Set集合上
         */
        public Set<K> keySet() {
            return navigableKeySet();
        }
    
        /**
         * keySet()方法的实现
         * @since 1.6
         */
        public NavigableSet<K> navigableKeySet() {
            KeySet<K> nks = navigableKeySet;
            return (nks != null) ? nks : (navigableKeySet = new KeySet<>(this));
        }
    
        /**
         * 返回key的Set集合,Set中的key按照降序排列
         * NavigableSet集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到NavigableSet集合上
         * @since 1.6
         */
        public NavigableSet<K> descendingKeySet() {
            return descendingMap().navigableKeySet();
        }
    
        /**
         * 返回TreeMap中所有的value,不会对value去重
         * value集合的修改会反馈到TreeMap中,同样TreeMap的修改也反馈到value集合上
         */
        public Collection<V> values() {
            Collection<V> vs = values;
            if (vs == null) {
                vs = new Values();
                values = vs;
            }
            return vs;
        }
    
        /**
         * 返回键值对的集合
         */
        public Set<Map.Entry<K,V>> entrySet() {
            EntrySet es = entrySet;
            return (es != null) ? es : (entrySet = new EntrySet());
        }
    
        /**
         * 返回TreeMap的倒序Map
         * 先看有没有缓存好的descendingMap,如果没有就创建一个DescendingSubMap返回并缓存
         * @since 1.6
         */
        public NavigableMap<K, V> descendingMap() {
            NavigableMap<K, V> km = descendingMap;
            return (km != null) ? km :
                (descendingMap = new DescendingSubMap<>(this,
                                                        true, null, true,
                                                        true, null, true));
        }
    
        /**
         * 返回子视图,升序排列,对视图的 修改和对源map的修改都会相互影响对方
         */
        public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                        K toKey,   boolean toInclusive) {
            return new AscendingSubMap<>(this,
                                         false, fromKey, fromInclusive,
                                         false, toKey,   toInclusive);
        }
    
        /**
         * 返回TreeMap中键小于toKey的所有节点的视图,inclusive表示是否可以等于tokey
         */
        public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
            return new AscendingSubMap<>(this,
                                         true,  null,  true,
                                         false, toKey, inclusive);
        }
    
        /**
         * 返回TreeMap中键大于fromKey的所有节点的视图,inclusive表示是否可以等于fromKey
         */
        public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
            return new AscendingSubMap<>(this,
                                         false, fromKey, inclusive,
                                         true,  null,    true);
        }
    
        /**
         * 返回TreeMap的一个子视图,key大于等于formKey小于toKey
         */
        public SortedMap<K,V> subMap(K fromKey, K toKey) {
            return subMap(fromKey, true, toKey, false);
        }
    
        /**
         * 返回小于key的节点视图
         */
        public SortedMap<K,V> headMap(K toKey) {
            return headMap(toKey, false);
        }
    
        /**
         * 返回大于等于key的节点视图
         */
        public SortedMap<K,V> tailMap(K fromKey) {
            return tailMap(fromKey, true);
        }
    
        /**
         * 替换key和value都匹配的value值
         */
        @Override
        public boolean replace(K key, V oldValue, V newValue) {
            Entry<K,V> p = getEntry(key);
            if (p!=null && Objects.equals(oldValue, p.value)) {
                p.value = newValue;
                return true;
            }
            return false;
        }
    
        /**
         * 替换key的value,并返回旧的value
         */
        @Override
        public V replace(K key, V value) {
            Entry<K,V> p = getEntry(key);
            if (p!=null) {
                V oldValue = p.value;
                p.value = value;
                return oldValue;
            }
            return null;
        }
    
        /**
         * 遍历TreeMap中的节点并做相关的操作
         */
        @Override
        public void forEach(BiConsumer<? super K, ? super V> action) {
            Objects.requireNonNull(action);
            int expectedModCount = modCount;
            for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
                action.accept(e.key, e.value);
    
                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    
        /**
         * 替换括号中满足条件的键值对的值,新的值通过括号中的表达式计算得到
         */
        @Override
        public void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
            Objects.requireNonNull(function);
            int expectedModCount = modCount;
    
            for (Entry<K, V> e = getFirstEntry(); e != null; e = successor(e)) {
                e.value = function.apply(e.key, e.value);
    
                if (expectedModCount != modCount) {
                    throw new ConcurrentModificationException();
                }
            }
        }
    
        // TreeMap的值的视图
    
        class Values extends AbstractCollection<V> {
            public Iterator<V> iterator() {
                return new ValueIterator(getFirstEntry());
            }
    
            public int size() {
                return TreeMap.this.size();
            }
    
            public boolean contains(Object o) {
                return TreeMap.this.containsValue(o);
            }
    
            public boolean remove(Object o) {
                for (Entry<K,V> e = getFirstEntry(); e != null; e = successor(e)) {
                    if (valEquals(e.getValue(), o)) {
                        deleteEntry(e);
                        return true;
                    }
                }
                return false;
            }
    
            public void clear() {
                TreeMap.this.clear();
            }
    
            public Spliterator<V> spliterator() {
                return new ValueSpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
            }
        }
    
        /**
         * TreeMap的键值对视图
         */
        class EntrySet extends AbstractSet<Map.Entry<K,V>> {
            public Iterator<Map.Entry<K,V>> iterator() {
                return new EntryIterator(getFirstEntry());
            }
    
            public boolean contains(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                Object value = entry.getValue();
                Entry<K,V> p = getEntry(entry.getKey());
                return p != null && valEquals(p.getValue(), value);
            }
    
            public boolean remove(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                Object value = entry.getValue();
                Entry<K,V> p = getEntry(entry.getKey());
                if (p != null && valEquals(p.getValue(), value)) {
                    deleteEntry(p);
                    return true;
                }
                return false;
            }
    
            public int size() {
                return TreeMap.this.size();
            }
    
            public void clear() {
                TreeMap.this.clear();
            }
    
            public Spliterator<Map.Entry<K,V>> spliterator() {
                return new EntrySpliterator<K,V>(TreeMap.this, null, null, 0, -1, 0);
            }
        }
    
        /**
         * 键迭代器
         */
    
        Iterator<K> keyIterator() {
            return new KeyIterator(getFirstEntry());
        }
        
        /**
         * 反向键迭代器
         * @return
         */
        Iterator<K> descendingKeyIterator() {
            return new DescendingKeyIterator(getLastEntry());
        }
        //TreeMap中键的视图
        static final class KeySet<E> extends AbstractSet<E> implements NavigableSet<E> {
            private final NavigableMap<E, ?> m;
            KeySet(NavigableMap<E,?> map) { m = map; }
    
            public Iterator<E> iterator() {
                if (m instanceof TreeMap)
                    return ((TreeMap<E,?>)m).keyIterator();
                else
                    return ((TreeMap.NavigableSubMap<E,?>)m).keyIterator();
            }
    
            public Iterator<E> descendingIterator() {
                if (m instanceof TreeMap)
                    return ((TreeMap<E,?>)m).descendingKeyIterator();
                else
                    return ((TreeMap.NavigableSubMap<E,?>)m).descendingKeyIterator();
            }
    
            public int size() { return m.size(); }
            public boolean isEmpty() { return m.isEmpty(); }
            public boolean contains(Object o) { return m.containsKey(o); }
            public void clear() { m.clear(); }
            public E lower(E e) { return m.lowerKey(e); }
            public E floor(E e) { return m.floorKey(e); }
            public E ceiling(E e) { return m.ceilingKey(e); }
            public E higher(E e) { return m.higherKey(e); }
            public E first() { return m.firstKey(); }
            public E last() { return m.lastKey(); }
            public Comparator<? super E> comparator() { return m.comparator(); }
            public E pollFirst() {
                Map.Entry<E,?> e = m.pollFirstEntry();
                return (e == null) ? null : e.getKey();
            }
            public E pollLast() {
                Map.Entry<E,?> e = m.pollLastEntry();
                return (e == null) ? null : e.getKey();
            }
            public boolean remove(Object o) {
                int oldSize = size();
                m.remove(o);
                return size() != oldSize;
            }
            public NavigableSet<E> subSet(E fromElement, boolean fromInclusive,
                                          E toElement,   boolean toInclusive) {
                return new KeySet<>(m.subMap(fromElement, fromInclusive,
                                              toElement,   toInclusive));
            }
            public NavigableSet<E> headSet(E toElement, boolean inclusive) {
                return new KeySet<>(m.headMap(toElement, inclusive));
            }
            public NavigableSet<E> tailSet(E fromElement, boolean inclusive) {
                return new KeySet<>(m.tailMap(fromElement, inclusive));
            }
            public SortedSet<E> subSet(E fromElement, E toElement) {
                return subSet(fromElement, true, toElement, false);
            }
            public SortedSet<E> headSet(E toElement) {
                return headSet(toElement, false);
            }
            public SortedSet<E> tailSet(E fromElement) {
                return tailSet(fromElement, true);
            }
            public NavigableSet<E> descendingSet() {
                return new KeySet<>(m.descendingMap());
            }
    
            public Spliterator<E> spliterator() {
                return keySpliteratorFor(m);
            }
        }
    
        /**
         * 键值对迭代器
         */
        abstract class PrivateEntryIterator<T> implements Iterator<T> {
            Entry<K,V> next;
            Entry<K,V> lastReturned;
            int expectedModCount;
    
            PrivateEntryIterator(Entry<K,V> first) {
                expectedModCount = modCount;
                lastReturned = null;
                next = first;
            }
    
            public final boolean hasNext() {
                return next != null;
            }
    
            final Entry<K,V> nextEntry() {
                Entry<K,V> e = next;
                if (e == null)
                    throw new NoSuchElementException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = successor(e);
                lastReturned = e;
                return e;
            }
    
            final Entry<K,V> prevEntry() {
                Entry<K,V> e = next;
                if (e == null)
                    throw new NoSuchElementException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                next = predecessor(e);
                lastReturned = e;
                return e;
            }
    
            public void remove() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                // deleted entries are replaced by their successors
                if (lastReturned.left != null && lastReturned.right != null)
                    next = lastReturned;
                deleteEntry(lastReturned);
                expectedModCount = modCount;
                lastReturned = null;
            }
        }
    
        final class EntryIterator extends PrivateEntryIterator<Map.Entry<K,V>> {
            EntryIterator(Entry<K,V> first) {
                super(first);
            }
            public Map.Entry<K,V> next() {
                return nextEntry();
            }
        }
    
        final class ValueIterator extends PrivateEntryIterator<V> {
            ValueIterator(Entry<K,V> first) {
                super(first);
            }
            public V next() {
                return nextEntry().value;
            }
        }
    
        final class KeyIterator extends PrivateEntryIterator<K> {
            KeyIterator(Entry<K,V> first) {
                super(first);
            }
            public K next() {
                return nextEntry().key;
            }
        }
    
        final class DescendingKeyIterator extends PrivateEntryIterator<K> {
            DescendingKeyIterator(Entry<K,V> first) {
                super(first);
            }
            public K next() {
                return prevEntry().key;
            }
            public void remove() {
                if (lastReturned == null)
                    throw new IllegalStateException();
                if (modCount != expectedModCount)
                    throw new ConcurrentModificationException();
                deleteEntry(lastReturned);
                lastReturned = null;
                expectedModCount = modCount;
            }
        }
    
        // Little utilities 一些小工具
    
        /**
         * 比较两个对象,如果有比较器就用比较器,没有就用两个对象的自然排序进行比较
         */
        @SuppressWarnings("unchecked")
        final int compare(Object k1, Object k2) {
            return comparator==null ? ((Comparable<? super K>)k1).compareTo((K)k2)
                : comparator.compare((K)k1, (K)k2);
        }
    
        /**
         * 比较两个两个对象是否相等
         */
        static final boolean valEquals(Object o1, Object o2) {
            return (o1==null ? o2==null : o1.equals(o2));
        }
    
        /**
         * 返回entry的 不可变对象
         */
        static <K,V> Map.Entry<K,V> exportEntry(TreeMap.Entry<K,V> e) {
            return (e == null) ? null :
                new AbstractMap.SimpleImmutableEntry<>(e);
        }
    
        /**
         * 返回键值对的键
         */
        static <K,V> K keyOrNull(TreeMap.Entry<K,V> e) {
            return (e == null) ? null : e.key;
        }
    
        /**
         * 返回节点的key,节点为null则报错
         */
        static <K> K key(Entry<K,?> e) {
            if (e==null)
                throw new NoSuchElementException();
            return e.key;
        }
    
    
        // SubMaps
    
        /**
         * Dummy value serving as unmatchable fence key for unbounded
         * SubMapIterators
         */
        private static final Object UNBOUNDED = new Object();
    
        /**
         * @serial include
         */
        abstract static class NavigableSubMap<K,V> extends AbstractMap<K,V>
            implements NavigableMap<K,V>, java.io.Serializable {
            private static final long serialVersionUID = -2102997345730753016L;
            /**
             * The backing map.
             */
            final TreeMap<K,V> m;
    
            /**
             * fromStart 是否从第一个节点开始
             * lo    开始节点
             * loInclusive 是否包含lo节点
             * 
             * toEnd 是否到最后一个节点
             * hi    结束节点
             * hiInclusive 是否包含hi节点 
             */
            final K lo, hi;
            final boolean fromStart, toEnd;
            final boolean loInclusive, hiInclusive;
    
            NavigableSubMap(TreeMap<K,V> m,
                            boolean fromStart, K lo, boolean loInclusive,
                            boolean toEnd,     K hi, boolean hiInclusive) {
                if (!fromStart && !toEnd) {
                    if (m.compare(lo, hi) > 0)
                        throw new IllegalArgumentException("fromKey > toKey");
                } else {
                    if (!fromStart) // type check
                        m.compare(lo, lo);
                    if (!toEnd)
                        m.compare(hi, hi);
                }
    
                this.m = m;
                this.fromStart = fromStart;
                this.lo = lo;
                this.loInclusive = loInclusive;
                this.toEnd = toEnd;
                this.hi = hi;
                this.hiInclusive = hiInclusive;
            }
    
            // internal utilities
            //判断key是否小于NavigableSubMap的lo
            final boolean tooLow(Object key) {
                if (!fromStart) {
                    int c = m.compare(key, lo);
                    if (c < 0 || (c == 0 && !loInclusive))
                        return true;
                }
                return false;
            }
            //判断key是否大于NavigableSubMap的hi
            final boolean tooHigh(Object key) {
                if (!toEnd) {
                    int c = m.compare(key, hi);
                    if (c > 0 || (c == 0 && !hiInclusive))
                        return true;
                }
                return false;
            }
            //判断key是否在NavigableSubMap的范围之间
            final boolean inRange(Object key) {
                return !tooLow(key) && !tooHigh(key);
            }
            //判断key是否在视图范围之内
            final boolean inClosedRange(Object key) {
                return (fromStart || m.compare(key, lo) >= 0)
                    && (toEnd || m.compare(hi, key) >= 0);
            }
            //判断key是否在视图范围之内
            final boolean inRange(Object key, boolean inclusive) {
                return inclusive ? inRange(key) : inClosedRange(key);
            }
    
            /*
             * Absolute versions of relation operations.
             * Subclasses map to these using like-named "sub"
             * versions that invert senses for descending maps
             */
    
            final TreeMap.Entry<K,V> absLowest() {
                TreeMap.Entry<K,V> e =
                    (fromStart ?  m.getFirstEntry() :
                     (loInclusive ? m.getCeilingEntry(lo) :
                                    m.getHigherEntry(lo)));
                return (e == null || tooHigh(e.key)) ? null : e;
            }
    
            final TreeMap.Entry<K,V> absHighest() {
                TreeMap.Entry<K,V> e =
                    (toEnd ?  m.getLastEntry() :
                     (hiInclusive ?  m.getFloorEntry(hi) :
                                     m.getLowerEntry(hi)));
                return (e == null || tooLow(e.key)) ? null : e;
            }
    
            final TreeMap.Entry<K,V> absCeiling(K key) {
                if (tooLow(key))
                    return absLowest();
                TreeMap.Entry<K,V> e = m.getCeilingEntry(key);
                return (e == null || tooHigh(e.key)) ? null : e;
            }
    
            final TreeMap.Entry<K,V> absHigher(K key) {
                if (tooLow(key))
                    return absLowest();
                TreeMap.Entry<K,V> e = m.getHigherEntry(key);
                return (e == null || tooHigh(e.key)) ? null : e;
            }
    
            final TreeMap.Entry<K,V> absFloor(K key) {
                if (tooHigh(key))
                    return absHighest();
                TreeMap.Entry<K,V> e = m.getFloorEntry(key);
                return (e == null || tooLow(e.key)) ? null : e;
            }
    
            final TreeMap.Entry<K,V> absLower(K key) {
                if (tooHigh(key))
                    return absHighest();
                TreeMap.Entry<K,V> e = m.getLowerEntry(key);
                return (e == null || tooLow(e.key)) ? null : e;
            }
    
            /** Returns the absolute high fence for ascending traversal */
            final TreeMap.Entry<K,V> absHighFence() {
                return (toEnd ? null : (hiInclusive ?
                                        m.getHigherEntry(hi) :
                                        m.getCeilingEntry(hi)));
            }
    
            /** Return the absolute low fence for descending traversal  */
            final TreeMap.Entry<K,V> absLowFence() {
                return (fromStart ? null : (loInclusive ?
                                            m.getLowerEntry(lo) :
                                            m.getFloorEntry(lo)));
            }
    
            // Abstract methods defined in ascending vs descending classes
            // These relay to the appropriate absolute versions
    
            abstract TreeMap.Entry<K,V> subLowest();
            abstract TreeMap.Entry<K,V> subHighest();
            abstract TreeMap.Entry<K,V> subCeiling(K key);
            abstract TreeMap.Entry<K,V> subHigher(K key);
            abstract TreeMap.Entry<K,V> subFloor(K key);
            abstract TreeMap.Entry<K,V> subLower(K key);
    
            /** Returns ascending iterator from the perspective of this submap */
            abstract Iterator<K> keyIterator();
    
            abstract Spliterator<K> keySpliterator();
    
            /** Returns descending iterator from the perspective of this submap */
            abstract Iterator<K> descendingKeyIterator();
    
            // public methods
    
            public boolean isEmpty() {
                return (fromStart && toEnd) ? m.isEmpty() : entrySet().isEmpty();
            }
    
            public int size() {
                return (fromStart && toEnd) ? m.size() : entrySet().size();
            }
    
            public final boolean containsKey(Object key) {
                return inRange(key) && m.containsKey(key);
            }
    
            public final V put(K key, V value) {
                if (!inRange(key))
                    throw new IllegalArgumentException("key out of range");
                return m.put(key, value);
            }
    
            public final V get(Object key) {
                return !inRange(key) ? null :  m.get(key);
            }
    
            public final V remove(Object key) {
                return !inRange(key) ? null : m.remove(key);
            }
    
            public final Map.Entry<K,V> ceilingEntry(K key) {
                return exportEntry(subCeiling(key));
            }
    
            public final K ceilingKey(K key) {
                return keyOrNull(subCeiling(key));
            }
    
            public final Map.Entry<K,V> higherEntry(K key) {
                return exportEntry(subHigher(key));
            }
    
            public final K higherKey(K key) {
                return keyOrNull(subHigher(key));
            }
    
            public final Map.Entry<K,V> floorEntry(K key) {
                return exportEntry(subFloor(key));
            }
    
            public final K floorKey(K key) {
                return keyOrNull(subFloor(key));
            }
    
            public final Map.Entry<K,V> lowerEntry(K key) {
                return exportEntry(subLower(key));
            }
    
            public final K lowerKey(K key) {
                return keyOrNull(subLower(key));
            }
    
            public final K firstKey() {
                return key(subLowest());
            }
    
            public final K lastKey() {
                return key(subHighest());
            }
    
            public final Map.Entry<K,V> firstEntry() {
                return exportEntry(subLowest());
            }
    
            public final Map.Entry<K,V> lastEntry() {
                return exportEntry(subHighest());
            }
    
            public final Map.Entry<K,V> pollFirstEntry() {
                TreeMap.Entry<K,V> e = subLowest();
                Map.Entry<K,V> result = exportEntry(e);
                if (e != null)
                    m.deleteEntry(e);
                return result;
            }
    
            public final Map.Entry<K,V> pollLastEntry() {
                TreeMap.Entry<K,V> e = subHighest();
                Map.Entry<K,V> result = exportEntry(e);
                if (e != null)
                    m.deleteEntry(e);
                return result;
            }
    
            // Views
            transient NavigableMap<K,V> descendingMapView;
            transient EntrySetView entrySetView;
            transient KeySet<K> navigableKeySetView;
    
            public final NavigableSet<K> navigableKeySet() {
                KeySet<K> nksv = navigableKeySetView;
                return (nksv != null) ? nksv :
                    (navigableKeySetView = new TreeMap.KeySet<>(this));
            }
    
            public final Set<K> keySet() {
                return navigableKeySet();
            }
    
            public NavigableSet<K> descendingKeySet() {
                return descendingMap().navigableKeySet();
            }
    
            public final SortedMap<K,V> subMap(K fromKey, K toKey) {
                return subMap(fromKey, true, toKey, false);
            }
    
            public final SortedMap<K,V> headMap(K toKey) {
                return headMap(toKey, false);
            }
    
            public final SortedMap<K,V> tailMap(K fromKey) {
                return tailMap(fromKey, true);
            }
    
            // View classes
    
            abstract class EntrySetView extends AbstractSet<Map.Entry<K,V>> {
                private transient int size = -1, sizeModCount;
    
                public int size() {
                    if (fromStart && toEnd)
                        return m.size();
                    if (size == -1 || sizeModCount != m.modCount) {
                        sizeModCount = m.modCount;
                        size = 0;
                        Iterator<?> i = iterator();
                        while (i.hasNext()) {
                            size++;
                            i.next();
                        }
                    }
                    return size;
                }
    
                public boolean isEmpty() {
                    TreeMap.Entry<K,V> n = absLowest();
                    return n == null || tooHigh(n.key);
                }
    
                public boolean contains(Object o) {
                    if (!(o instanceof Map.Entry))
                        return false;
                    Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                    Object key = entry.getKey();
                    if (!inRange(key))
                        return false;
                    TreeMap.Entry<?,?> node = m.getEntry(key);
                    return node != null &&
                        valEquals(node.getValue(), entry.getValue());
                }
    
                public boolean remove(Object o) {
                    if (!(o instanceof Map.Entry))
                        return false;
                    Map.Entry<?,?> entry = (Map.Entry<?,?>) o;
                    Object key = entry.getKey();
                    if (!inRange(key))
                        return false;
                    TreeMap.Entry<K,V> node = m.getEntry(key);
                    if (node!=null && valEquals(node.getValue(),
                                                entry.getValue())) {
                        m.deleteEntry(node);
                        return true;
                    }
                    return false;
                }
            }
    
            /**
             * Iterators for SubMaps
             * 视图迭代器
             */
            abstract class SubMapIterator<T> implements Iterator<T> {
                TreeMap.Entry<K,V> lastReturned;
                TreeMap.Entry<K,V> next;
                final Object fenceKey;
                int expectedModCount;
    
                SubMapIterator(TreeMap.Entry<K,V> first,
                               TreeMap.Entry<K,V> fence) {
                    expectedModCount = m.modCount;
                    lastReturned = null;
                    next = first;
                    fenceKey = fence == null ? UNBOUNDED : fence.key;
                }
    
                public final boolean hasNext() {
                    return next != null && next.key != fenceKey;
                }
    
                final TreeMap.Entry<K,V> nextEntry() {
                    TreeMap.Entry<K,V> e = next;
                    if (e == null || e.key == fenceKey)
                        throw new NoSuchElementException();
                    if (m.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    next = successor(e);
                    lastReturned = e;
                    return e;
                }
    
                final TreeMap.Entry<K,V> prevEntry() {
                    TreeMap.Entry<K,V> e = next;
                    if (e == null || e.key == fenceKey)
                        throw new NoSuchElementException();
                    if (m.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    next = predecessor(e);
                    lastReturned = e;
                    return e;
                }
    
                final void removeAscending() {
                    if (lastReturned == null)
                        throw new IllegalStateException();
                    if (m.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    // deleted entries are replaced by their successors
                    if (lastReturned.left != null && lastReturned.right != null)
                        next = lastReturned;
                    m.deleteEntry(lastReturned);
                    lastReturned = null;
                    expectedModCount = m.modCount;
                }
    
                final void removeDescending() {
                    if (lastReturned == null)
                        throw new IllegalStateException();
                    if (m.modCount != expectedModCount)
                        throw new ConcurrentModificationException();
                    m.deleteEntry(lastReturned);
                    lastReturned = null;
                    expectedModCount = m.modCount;
                }
    
            }
            //视图Entry迭代器
            final class SubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
                SubMapEntryIterator(TreeMap.Entry<K,V> first,
                                    TreeMap.Entry<K,V> fence) {
                    super(first, fence);
                }
                public Map.Entry<K,V> next() {
                    return nextEntry();
                }
                public void remove() {
                    removeAscending();
                }
            }
            //逆序视图entry迭代器
            final class DescendingSubMapEntryIterator extends SubMapIterator<Map.Entry<K,V>> {
                DescendingSubMapEntryIterator(TreeMap.Entry<K,V> last,
                                              TreeMap.Entry<K,V> fence) {
                    super(last, fence);
                }
    
                public Map.Entry<K,V> next() {
                    return prevEntry();
                }
                public void remove() {
                    removeDescending();
                }
            }
            
            // 简单实现Spliterator来作为KeySpliterator的备份
            final class SubMapKeyIterator extends SubMapIterator<K>
                implements Spliterator<K> {
                SubMapKeyIterator(TreeMap.Entry<K,V> first,
                                  TreeMap.Entry<K,V> fence) {
                    super(first, fence);
                }
                public K next() {
                    return nextEntry().key;
                }
                public void remove() {
                    removeAscending();
                }
                public Spliterator<K> trySplit() {
                    return null;
                }
                public void forEachRemaining(Consumer<? super K> action) {
                    while (hasNext())
                        action.accept(next());
                }
                public boolean tryAdvance(Consumer<? super K> action) {
                    if (hasNext()) {
                        action.accept(next());
                        return true;
                    }
                    return false;
                }
                public long estimateSize() {
                    return Long.MAX_VALUE;
                }
                public int characteristics() {
                    return Spliterator.DISTINCT | Spliterator.ORDERED |
                        Spliterator.SORTED;
                }
                public final Comparator<? super K>  getComparator() {
                    return NavigableSubMap.this.comparator();
                }
            }
            //逆序视图key迭代器
            final class DescendingSubMapKeyIterator extends SubMapIterator<K>
                implements Spliterator<K> {
                DescendingSubMapKeyIterator(TreeMap.Entry<K,V> last,
                                            TreeMap.Entry<K,V> fence) {
                    super(last, fence);
                }
                public K next() {
                    return prevEntry().key;
                }
                public void remove() {
                    removeDescending();
                }
                public Spliterator<K> trySplit() {
                    return null;
                }
                public void forEachRemaining(Consumer<? super K> action) {
                    while (hasNext())
                        action.accept(next());
                }
                public boolean tryAdvance(Consumer<? super K> action) {
                    if (hasNext()) {
                        action.accept(next());
                        return true;
                    }
                    return false;
                }
                public long estimateSize() {
                    return Long.MAX_VALUE;
                }
                public int characteristics() {
                    return Spliterator.DISTINCT | Spliterator.ORDERED;
                }
            }
        }
    
        /**
         * 正序视图
         */
        static final class AscendingSubMap<K,V> extends NavigableSubMap<K,V> {
            private static final long serialVersionUID = 912986545866124060L;
    
            AscendingSubMap(TreeMap<K,V> m,
                            boolean fromStart, K lo, boolean loInclusive,
                            boolean toEnd,     K hi, boolean hiInclusive) {
                super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
            }
    
            public Comparator<? super K> comparator() {
                return m.comparator();
            }
    
            public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                            K toKey,   boolean toInclusive) {
                if (!inRange(fromKey, fromInclusive))
                    throw new IllegalArgumentException("fromKey out of range");
                if (!inRange(toKey, toInclusive))
                    throw new IllegalArgumentException("toKey out of range");
                return new AscendingSubMap<>(m,
                                             false, fromKey, fromInclusive,
                                             false, toKey,   toInclusive);
            }
    
            public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
                if (!inRange(toKey, inclusive))
                    throw new IllegalArgumentException("toKey out of range");
                return new AscendingSubMap<>(m,
                                             fromStart, lo,    loInclusive,
                                             false,     toKey, inclusive);
            }
    
            public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
                if (!inRange(fromKey, inclusive))
                    throw new IllegalArgumentException("fromKey out of range");
                return new AscendingSubMap<>(m,
                                             false, fromKey, inclusive,
                                             toEnd, hi,      hiInclusive);
            }
    
            public NavigableMap<K,V> descendingMap() {
                NavigableMap<K,V> mv = descendingMapView;
                return (mv != null) ? mv :
                    (descendingMapView =
                     new DescendingSubMap<>(m,
                                            fromStart, lo, loInclusive,
                                            toEnd,     hi, hiInclusive));
            }
    
            Iterator<K> keyIterator() {
                return new SubMapKeyIterator(absLowest(), absHighFence());
            }
    
            Spliterator<K> keySpliterator() {
                return new SubMapKeyIterator(absLowest(), absHighFence());
            }
    
            Iterator<K> descendingKeyIterator() {
                return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
            }
    
            final class AscendingEntrySetView extends EntrySetView {
                public Iterator<Map.Entry<K,V>> iterator() {
                    return new SubMapEntryIterator(absLowest(), absHighFence());
                }
            }
    
            public Set<Map.Entry<K,V>> entrySet() {
                EntrySetView es = entrySetView;
                return (es != null) ? es : (entrySetView = new AscendingEntrySetView());
            }
    
            TreeMap.Entry<K,V> subLowest()       { return absLowest(); }
            TreeMap.Entry<K,V> subHighest()      { return absHighest(); }
            TreeMap.Entry<K,V> subCeiling(K key) { return absCeiling(key); }
            TreeMap.Entry<K,V> subHigher(K key)  { return absHigher(key); }
            TreeMap.Entry<K,V> subFloor(K key)   { return absFloor(key); }
            TreeMap.Entry<K,V> subLower(K key)   { return absLower(key); }
        }
    
        /**
         * 逆序视图
         */
        static final class DescendingSubMap<K,V>  extends NavigableSubMap<K,V> {
            private static final long serialVersionUID = 912986545866120460L;
            DescendingSubMap(TreeMap<K,V> m,
                            boolean fromStart, K lo, boolean loInclusive,
                            boolean toEnd,     K hi, boolean hiInclusive) {
                super(m, fromStart, lo, loInclusive, toEnd, hi, hiInclusive);
            }
    
            private final Comparator<? super K> reverseComparator =
                Collections.reverseOrder(m.comparator);
    
            public Comparator<? super K> comparator() {
                return reverseComparator;
            }
    
            public NavigableMap<K,V> subMap(K fromKey, boolean fromInclusive,
                                            K toKey,   boolean toInclusive) {
                if (!inRange(fromKey, fromInclusive))
                    throw new IllegalArgumentException("fromKey out of range");
                if (!inRange(toKey, toInclusive))
                    throw new IllegalArgumentException("toKey out of range");
                return new DescendingSubMap<>(m,
                                              false, toKey,   toInclusive,
                                              false, fromKey, fromInclusive);
            }
    
            public NavigableMap<K,V> headMap(K toKey, boolean inclusive) {
                if (!inRange(toKey, inclusive))
                    throw new IllegalArgumentException("toKey out of range");
                return new DescendingSubMap<>(m,
                                              false, toKey, inclusive,
                                              toEnd, hi,    hiInclusive);
            }
    
            public NavigableMap<K,V> tailMap(K fromKey, boolean inclusive) {
                if (!inRange(fromKey, inclusive))
                    throw new IllegalArgumentException("fromKey out of range");
                return new DescendingSubMap<>(m,
                                              fromStart, lo, loInclusive,
                                              false, fromKey, inclusive);
            }
    
            public NavigableMap<K,V> descendingMap() {
                NavigableMap<K,V> mv = descendingMapView;
                return (mv != null) ? mv :
                    (descendingMapView =
                     new AscendingSubMap<>(m,
                                           fromStart, lo, loInclusive,
                                           toEnd,     hi, hiInclusive));
            }
    
            Iterator<K> keyIterator() {
                return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
            }
    
            Spliterator<K> keySpliterator() {
                return new DescendingSubMapKeyIterator(absHighest(), absLowFence());
            }
    
            Iterator<K> descendingKeyIterator() {
                return new SubMapKeyIterator(absLowest(), absHighFence());
            }
    
            final class DescendingEntrySetView extends EntrySetView {
                public Iterator<Map.Entry<K,V>> iterator() {
                    return new DescendingSubMapEntryIterator(absHighest(), absLowFence());
                }
            }
    
            public Set<Map.Entry<K,V>> entrySet() {
                EntrySetView es = entrySetView;
                return (es != null) ? es : (entrySetView = new DescendingEntrySetView());
            }
    
            TreeMap.Entry<K,V> subLowest()       { return absHighest(); }
            TreeMap.Entry<K,V> subHighest()      { return absLowest(); }
            TreeMap.Entry<K,V> subCeiling(K key) { return absFloor(key); }
            TreeMap.Entry<K,V> subHigher(K key)  { return absLower(key); }
            TreeMap.Entry<K,V> subFloor(K key)   { return absCeiling(key); }
            TreeMap.Entry<K,V> subLower(K key)   { return absHigher(key); }
        }
    
        /**
         * 视图,
         */
        private class SubMap extends AbstractMap<K,V>
            implements SortedMap<K,V>, java.io.Serializable {
            private static final long serialVersionUID = -6520786458950516097L;
            private boolean fromStart = false, toEnd = false;
            private K fromKey, toKey;
            private Object readResolve() {
                return new AscendingSubMap<>(TreeMap.this,
                                             fromStart, fromKey, true,
                                             toEnd, toKey, false);
            }
            public Set<Map.Entry<K,V>> entrySet() { throw new InternalError(); }
            public K lastKey() { throw new InternalError(); }
            public K firstKey() { throw new InternalError(); }
            public SortedMap<K,V> subMap(K fromKey, K toKey) { throw new InternalError(); }
            public SortedMap<K,V> headMap(K toKey) { throw new InternalError(); }
            public SortedMap<K,V> tailMap(K fromKey) { throw new InternalError(); }
            public Comparator<? super K> comparator() { throw new InternalError(); }
        }
    
    
        // 表示红黑树接电点的颜色
    
        private static final boolean RED   = false;
        private static final boolean BLACK = true;
    
        /**
         * 节点类,用来存储TreeMap每个节点的信息
         */
        static final class Entry<K,V> implements Map.Entry<K,V> {
            K key;//
            V value;//
            Entry<K,V> left;//左子节点
            Entry<K,V> right;//右子节点
            Entry<K,V> parent;//父节点
            boolean color = BLACK;//节点颜色,默认为黑色
    
            /**
             * 构造方法
             */
            Entry(K key, V value, Entry<K,V> parent) {
                this.key = key;
                this.value = value;
                this.parent = parent;
            }
    
            /**
             * 返回key
             */
            public K getKey() {
                return key;
            }
    
            /**
             * 返回value
             */
            public V getValue() {
                return value;
            }
    
            /**
             * 设置value
             */
            public V setValue(V value) {
                V oldValue = this.value;
                this.value = value;
                return oldValue;
            }
            
            /**
             * 判断节点和对象是否相等
             */
            public boolean equals(Object o) {
                if (!(o instanceof Map.Entry))
                    return false;
                Map.Entry<?,?> e = (Map.Entry<?,?>)o;
    
                return valEquals(key,e.getKey()) && valEquals(value,e.getValue());
            }
    
            /**
             * 返回节点的hashcode值,是节点的key和value的hashcode然后进行与运算
             */
            public int hashCode() {
                int keyHash = (key==null ? 0 : key.hashCode());
                int valueHash = (value==null ? 0 : value.hashCode());
                return keyHash ^ valueHash;
            }
    
            public String toString() {
                return key + "=" + value;
            }
        }
    
        /**
         * 获取第一个节点,也是最小的节点
         */
        final Entry<K,V> getFirstEntry() {
            Entry<K,V> p = root;
            if (p != null)
                while (p.left != null)
                    p = p.left;
            return p;
        }
    
        /**
         * 获取最后一个节点,也是最大节点
         */
        final Entry<K,V> getLastEntry() {
            Entry<K,V> p = root;
            if (p != null)
                while (p.right != null)
                    p = p.right;
            return p;
        }
    
        /**
         * 返回节点t的后继节点,也就是大于t节点的最小节点
         */
        static <K,V> TreeMap.Entry<K,V> successor(Entry<K,V> t) {
            if (t == null)
                return null;
            else if (t.right != null) {//如果该节点有右子节点,就找右子节点的 左子节点,一直往下找
                Entry<K,V> p = t.right;
                while (p.left != null)
                    p = p.left;
                return p;
            } else {//如果该节点没有右子节点,就向上找
                Entry<K,V> p = t.parent;
                Entry<K,V> ch = t;
                while (p != null && ch == p.right) {//如果当前节点是父节点的右子节点,就一直往上找,直到找到一个节点是其父节点的左子节点,那个父节点就是要找的节点
                    ch = p;
                    p = p.parent;
                }
                return p;
            }
        }
    
        /**
         * 返回小于t的最大节点。
         */
        static <K,V> Entry<K,V> predecessor(Entry<K,V> t) {
            if (t == null)
                return null;
            else if (t.left != null) {//如果该节点寸在左子节点,那么要找的节点就是左子节点的右子节点(一直找到最后一个)
                Entry<K,V> p = t.left;
                while (p.right != null)
                    p = p.right;
                return p;
            } else {//如果该节点没有左子节点,就一直往上找,直到找到一个节点是其父节点的右子节点,那个父节点就是要找的节点
                Entry<K,V> p = t.parent;
                Entry<K,V> ch = t;
                while (p != null && ch == p.left) {
                    ch = p;
                    p = p.parent;
                }
                return p;
            }
        }
    
        //返回节点的颜色
        private static <K,V> boolean colorOf(Entry<K,V> p) {
            return (p == null ? BLACK : p.color);
        }
        //返回节点的父节点
        private static <K,V> Entry<K,V> parentOf(Entry<K,V> p) {
            return (p == null ? null: p.parent);
        }
        //设置节点的颜色
        private static <K,V> void setColor(Entry<K,V> p, boolean c) {
            if (p != null)
                p.color = c;
        }
        //返回节点的左子节点
        private static <K,V> Entry<K,V> leftOf(Entry<K,V> p) {
            return (p == null) ? null: p.left;
        }
        //返回节点的右子节点
        private static <K,V> Entry<K,V> rightOf(Entry<K,V> p) {
            return (p == null) ? null: p.right;
        }
    
        /** From CLR 左旋的过程是将p的右子树绕p逆时针旋转,使得p的右子树成为p的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。*/
        private void rotateLeft(Entry<K,V> p) {
            if (p != null) {
                Entry<K,V> r = p.right;
                p.right = r.left;
                if (r.left != null)
                    r.left.parent = p;
                r.parent = p.parent;
                if (p.parent == null)
                    root = r;
                else if (p.parent.left == p)
                    p.parent.left = r;
                else
                    p.parent.right = r;
                r.left = p;
                p.parent = r;
            }
        }
    
        /** From CLR 右旋的过程是将p的左子树绕p顺时针旋转,使得p的左子树成为p的父亲,同时修改相关节点的引用。旋转之后,二叉查找树的属性仍然满足。 */
        private void rotateRight(Entry<K,V> p) {
            if (p != null) {
                Entry<K,V> l = p.left;
                p.left = l.right;
                if (l.right != null) l.right.parent = p;
                l.parent = p.parent;
                if (p.parent == null)
                    root = l;
                else if (p.parent.right == p)
                    p.parent.right = l;
                else p.parent.left = l;
                l.right = p;
                p.parent = l;
            }
        }
    
        /** From CLR 在加入新的节点后,树的平衡有可能被破坏,所以需要对TreeMap的树结构进行修复*/
        private void fixAfterInsertion(Entry<K,V> x) {
            x.color = RED;//先将当前接节点的颜色设置为红
    
            while (x != null && x != root && x.parent.color == RED) {//如果父节点是黑色的,那么无需进行任何操作。
                if (parentOf(x) == leftOf(parentOf(parentOf(x)))) {//如果父节点是祖节点的左子节点
                    Entry<K,V> y = rightOf(parentOf(parentOf(x)));//祖节点的右子节点,就称为当前节点的叔节点
                    if (colorOf(y) == RED) {//如果叔节点的颜色为red,则祖节点肯定为黑色。这样直接将父节点和叔节点都设置为黑色,祖节点设置为红色
                        setColor(parentOf(x), BLACK);
                        setColor(y, BLACK);
                        setColor(parentOf(parentOf(x)), RED);
                        x = parentOf(parentOf(x));//以祖节点为基准点继续上述操作
                    } else {//如果叔节点为黑色
                        if (x == rightOf(parentOf(x))) {//如果当前节点是父节点的右子节点,以父节点为基准点,然后对父节点进行左旋。
                            x = parentOf(x);
                            rotateLeft(x);
                        }
                        setColor(parentOf(x), BLACK);//将基准节点的父节点变黑,祖节点变红,对祖节点进行右旋操作
                        setColor(parentOf(parentOf(x)), RED);
                        rotateRight(parentOf(parentOf(x)));
                    }
                } else {//如果父节点是祖节点的右子节点
                    Entry<K,V> y = leftOf(parentOf(parentOf(x)));
                    if (colorOf(y) == RED) {//如果叔节点为红色,就将叔节点和父节点都设置为黑色,祖节点设置为红色。再以祖节点作为基准点继续上述操作
                        setColor(parentOf(x), BLACK);
                        setColor(y, BLACK);
                        setColor(parentOf(parentOf(x)), RED);
                        x = parentOf(parentOf(x));
                    } else {//如果叔节点是黑色
                        if (x == leftOf(parentOf(x))) {//如果当前节点是父节点的左子节点,就以父节点为基准节点进行右旋操作。
                            x = parentOf(x);
                            rotateRight(x);
                        }
                        setColor(parentOf(x), BLACK);//将基准点的父节点设置为黑色,祖节点设置为红色。然后对基准点的祖节点进行左旋操作
                        setColor(parentOf(parentOf(x)), RED);
                        rotateLeft(parentOf(parentOf(x)));
                    }
                }
            }
            root.color = BLACK;//将根节点设置为黑色
        }
    
        /**
         * 删除节点并重新平衡整棵树,使它符合红黑树
         */
        private void deleteEntry(Entry<K,V> p) {
            modCount++;
            size--;
    
            //将p的后继节点的key和value赋值给p然后将p指向p的后继节点
            if (p.left != null && p.right != null) {
                Entry<K,V> s = successor(p);
                p.key = s.key;
                p.value = s.value;
                p = s;
            } // p has 2 children
    
            // Start fixup at replacement node, if it exists.
            //开始修正替代节点,如果它存在
            Entry<K,V> replacement = (p.left != null ? p.left : p.right);
    
            if (replacement != null) {//如果替代节点存在
                // Link replacement to parent
                replacement.parent = p.parent;
                if (p.parent == null)//将p节点的父节点设置为replacement的父节点,如果p节点的父节点不存在,则将replacement设置为根节点
                    root = replacement;
                else if (p == p.parent.left)//如果p节点的父节点存在,就将replacement替换掉
                    p.parent.left  = replacement;
                else
                    p.parent.right = replacement;
    
                // Null out links so they are OK to use by fixAfterDeletion.
                //将p节点和其他的节点之间断开联系
                p.left = p.right = p.parent = null;
    
                // Fix replacement
                if (p.color == BLACK)//如果p节点的颜色是黑色,就需要对树结构进行调整
                    fixAfterDeletion(replacement);
            } else if (p.parent == null) { // return if we are the only node.
                root = null;
            } else { //  No children. Use self as phantom replacement and unlink.
                if (p.color == BLACK)
                    fixAfterDeletion(p);
    
                if (p.parent != null) {
                    if (p == p.parent.left)
                        p.parent.left = null;
                    else if (p == p.parent.right)
                        p.parent.right = null;
                    p.parent = null;
                }
            }
        }
    
        /** From CLR 删除节点后将树修复为红黑树结构*/
        private void fixAfterDeletion(Entry<K,V> x) {
            while (x != root && colorOf(x) == BLACK) {
                if (x == leftOf(parentOf(x))) {
                    Entry<K,V> sib = rightOf(parentOf(x));
    
                    if (colorOf(sib) == RED) {
                        setColor(sib, BLACK);
                        setColor(parentOf(x), RED);
                        rotateLeft(parentOf(x));
                        sib = rightOf(parentOf(x));
                    }
    
                    if (colorOf(leftOf(sib))  == BLACK &&
                        colorOf(rightOf(sib)) == BLACK) {
                        setColor(sib, RED);
                        x = parentOf(x);
                    } else {
                        if (colorOf(rightOf(sib)) == BLACK) {
                            setColor(leftOf(sib), BLACK);
                            setColor(sib, RED);
                            rotateRight(sib);
                            sib = rightOf(parentOf(x));
                        }
                        setColor(sib, colorOf(parentOf(x)));
                        setColor(parentOf(x), BLACK);
                        setColor(rightOf(sib), BLACK);
                        rotateLeft(parentOf(x));
                        x = root;
                    }
                } else { // symmetric
                    Entry<K,V> sib = leftOf(parentOf(x));
    
                    if (colorOf(sib) == RED) {
                        setColor(sib, BLACK);
                        setColor(parentOf(x), RED);
                        rotateRight(parentOf(x));
                        sib = leftOf(parentOf(x));
                    }
    
                    if (colorOf(rightOf(sib)) == BLACK &&
                        colorOf(leftOf(sib)) == BLACK) {
                        setColor(sib, RED);
                        x = parentOf(x);
                    } else {
                        if (colorOf(leftOf(sib)) == BLACK) {
                            setColor(rightOf(sib), BLACK);
                            setColor(sib, RED);
                            rotateLeft(sib);
                            sib = leftOf(parentOf(x));
                        }
                        setColor(sib, colorOf(parentOf(x)));
                        setColor(parentOf(x), BLACK);
                        setColor(leftOf(sib), BLACK);
                        rotateRight(parentOf(x));
                        x = root;
                    }
                }
            }
    
            setColor(x, BLACK);
        }
    
        private static final long serialVersionUID = 919286545866124006L;
    
        /**
         * 从流中读取对象
         */
        private void writeObject(java.io.ObjectOutputStream s)
            throws java.io.IOException {
            // Write out the Comparator and any hidden stuff
            s.defaultWriteObject();
    
            // Write out size (number of Mappings)
            s.writeInt(size);
    
            // Write out keys and values (alternating)
            for (Iterator<Map.Entry<K,V>> i = entrySet().iterator(); i.hasNext(); ) {
                Map.Entry<K,V> e = i.next();
                s.writeObject(e.getKey());
                s.writeObject(e.getValue());
            }
        }
    
        /**
         * 将对象写入流中
         */
        private void readObject(final java.io.ObjectInputStream s)
            throws java.io.IOException, ClassNotFoundException {
            // Read in the Comparator and any hidden stuff
            s.defaultReadObject();
    
            // Read in size
            int size = s.readInt();
    
            buildFromSorted(size, null, s, null);
        }
    
        /** Intended to be called only from TreeSet.readObject */
        void readTreeSet(int size, java.io.ObjectInputStream s, V defaultVal)
            throws java.io.IOException, ClassNotFoundException {
            buildFromSorted(size, null, s, defaultVal);
        }
    
        /** Intended to be called only from TreeSet.addAll */
        void addAllForTreeSet(SortedSet<? extends K> set, V defaultVal) {
            try {
                buildFromSorted(set.size(), set.iterator(), null, defaultVal);
            } catch (java.io.IOException cannotHappen) {
            } catch (ClassNotFoundException cannotHappen) {
            }
        }
    
    
        /**
         * Linear time tree building algorithm from sorted data.  Can accept keys
         * and/or values from iterator or stream. This leads to too many
         * parameters, but seems better than alternatives.  The four formats
         * that this method accepts are:
         *
         *    1) An iterator of Map.Entries.  (it != null, defaultVal == null).
         *    2) An iterator of keys.         (it != null, defaultVal != null).
         *    3) A stream of alternating serialized keys and values.
         *                                   (it == null, defaultVal == null).
         *    4) A stream of serialized keys. (it == null, defaultVal != null).
         *
         * It is assumed that the comparator of the TreeMap is already set prior
         * to calling this method.
         *
         * @param size the number of keys (or key-value pairs) to be read from
         *        the iterator or stream
         * @param it If non-null, new entries are created from entries
         *        or keys read from this iterator.
         * @param str If non-null, new entries are created from keys and
         *        possibly values read from this stream in serialized form.
         *        Exactly one of it and str should be non-null.
         * @param defaultVal if non-null, this default value is used for
         *        each value in the map.  If null, each value is read from
         *        iterator or stream, as described above.
         * @throws java.io.IOException propagated from stream reads. This cannot
         *         occur if str is null.
         * @throws ClassNotFoundException propagated from readObject.
         *         This cannot occur if str is null.
         */
        private void buildFromSorted(int size, Iterator<?> it,
                                     java.io.ObjectInputStream str,
                                     V defaultVal)
            throws  java.io.IOException, ClassNotFoundException {
            this.size = size;
            root = buildFromSorted(0, 0, size-1, computeRedLevel(size),
                                   it, str, defaultVal);
        }
    
        /**
         * Recursive "helper method" that does the real work of the
         * previous method.  Identically named parameters have
         * identical definitions.  Additional parameters are documented below.
         * It is assumed that the comparator and size fields of the TreeMap are
         * already set prior to calling this method.  (It ignores both fields.)
         *
         * @param level the current level of tree. Initial call should be 0.
         * @param lo the first element index of this subtree. Initial should be 0.
         * @param hi the last element index of this subtree.  Initial should be
         *        size-1.
         * @param redLevel the level at which nodes should be red.
         *        Must be equal to computeRedLevel for tree of this size.
         */
        @SuppressWarnings("unchecked")
        private final Entry<K,V> buildFromSorted(int level, int lo, int hi,
                                                 int redLevel,
                                                 Iterator<?> it,
                                                 java.io.ObjectInputStream str,
                                                 V defaultVal)
            throws  java.io.IOException, ClassNotFoundException {
            /*
             * Strategy: The root is the middlemost element. To get to it, we
             * have to first recursively construct the entire left subtree,
             * so as to grab all of its elements. We can then proceed with right
             * subtree.
             *
             * The lo and hi arguments are the minimum and maximum
             * indices to pull out of the iterator or stream for current subtree.
             * They are not actually indexed, we just proceed sequentially,
             * ensuring that items are extracted in corresponding order.
             */
    
            if (hi < lo) return null;
    
            int mid = (lo + hi) >>> 1;
    
            Entry<K,V> left  = null;
            if (lo < mid)
                left = buildFromSorted(level+1, lo, mid - 1, redLevel,
                                       it, str, defaultVal);
    
            // extract key and/or value from iterator or stream
            K key;
            V value;
            if (it != null) {
                if (defaultVal==null) {
                    Map.Entry<?,?> entry = (Map.Entry<?,?>)it.next();
                    key = (K)entry.getKey();
                    value = (V)entry.getValue();
                } else {
                    key = (K)it.next();
                    value = defaultVal;
                }
            } else { // use stream
                key = (K) str.readObject();
                value = (defaultVal != null ? defaultVal : (V) str.readObject());
            }
    
            Entry<K,V> middle =  new Entry<>(key, value, null);
    
            // color nodes in non-full bottommost level red
            if (level == redLevel)
                middle.color = RED;
    
            if (left != null) {
                middle.left = left;
                left.parent = middle;
            }
    
            if (mid < hi) {
                Entry<K,V> right = buildFromSorted(level+1, mid+1, hi, redLevel,
                                                   it, str, defaultVal);
                middle.right = right;
                right.parent = middle;
            }
    
            return middle;
        }
    
        /**
         * Find the level down to which to assign all nodes BLACK.  This is the
         * last `full' level of the complete binary tree produced by
         * buildTree. The remaining nodes are colored RED. (This makes a `nice'
         * set of color assignments wrt future insertions.) This level number is
         * computed by finding the number of splits needed to reach the zeroeth
         * node.  (The answer is ~lg(N), but in any case must be computed by same
         * quick O(lg(N)) loop.)
         */
        private static int computeRedLevel(int sz) {
            int level = 0;
            for (int m = sz - 1; m >= 0; m = m / 2 - 1)
                level++;
            return level;
        }
    
    }
    View Code

    二、TreeMap的特点

      1、存入TreeMap的键值对的key是要能自然排序的(实现了Comparable接口),否则就要自定义一个比较器Comparator作为参数传入构造函数。

      2、TreeMap是以红黑树将数据组织在一起,在添加或者删除节点的时候有可能将红黑树的结构破坏了,所以需要判断是否对红黑树进行修复。

      3、由于底层是红黑树结构,所以TreeMap的基本操作 containsKey、get、put 和 remove 的时间复杂度是 log(n) 。 

      4、由于TreeMap实现了NavigableMap,所以TreeMap有一系列的导航方法。

    三、比较器Comparator和实现Comparable接口

       TreeMap中的键值对key要么是可比较的,要么就是TreeMap中有比较器,否则无法加入TreeMap中。

       1、创建比较器需要实现Comparator接口,然后实现其compare方法。使用比较器的时候只需要创建一个比较器实例然后传入TreeMap的构造器

       2、创建一个类实现Comparable接口,然后实现compareTo方法,是对象可比较

       3、如果key本身具有自然比较性,同时TreeMap也有比较器那么用比较器进行比较。

       4、如果是通过key的自身排序则key不能为null,如果是通过自定义比较器,那么就看自己定义比较器的逻辑了。

    //自定义比较器
    public
    class MyComparator implements Comparator<MyEntity> { @Override public int compare(MyEntity e1, MyEntity e2) { int f = e1 == null ? (e2 == null ? 0 : -1) : (e2 == null ? 1 : 2); if(f == 2){ if(e1.getValue() > e2.getValue()){ return 1; }else if(e1.getValue() < e2.getValue()){ return -1; }else{ return 0; } } return f; } }

        ...

    //让对象可比较
    public class MyEntity implements Comparable<MyEntity>{
        
        private String name;
        
        private int value;
        
        public MyEntity(String name, int value) {
            super();
            this.name = name;
            this.value = value;
        }
    
        public String getName() {
            return name;
        }
    
        public void setName(String name) {
            this.name = name;
        }
    
        public int getValue() {
            return value;
        }
    
        public void setValue(int value) {
            this.value = value;
        }
        
        @Override
        public String toString() {
            return "MyEntity [name=" + name + ", value=" + value + "]";
        }
    
        @Override
        public int compareTo(MyEntity e) {
            if(value > e.getValue()){
                return 1;
            }else if(value < e.getValue()){
                return -1;
            }else{
                return 0;
            }
        }
    }

     

  • 相关阅读:
    POJ3889Fractal Streets
    POJ3263 Tallest Cow
    tyvjP1288 飘飘乎居士取能量块
    洛谷P3369 【模板】普通平衡树(Treap/SBT)
    洛谷P1063 能量项链 [2006NOIP提高组]
    洛谷P1541 乌龟棋 [2010NOIP提高组]
    POJ3322 Bloxorz I
    BZOJ1218:[HNOI2003]激光炸弹
    TyvjP1266 费解的开关
    洛谷P3070 [USACO13JAN]岛游记Island Travels
  • 原文地址:https://www.cnblogs.com/kyleinjava/p/10849197.html
Copyright © 2011-2022 走看看