zoukankan      html  css  js  c++  java
  • 【数论】[圆点坐标]P2508圆上的整点

    题目描述

    求一个给定的圆(x ^2 +y ^2 = r ^2),在圆周上有多少个点的坐标是整数

    Solution

    圆上的点坐标通解:(x = dfrac{v^2-u^2}{2},y = duv, r = frac{d(v^2-u^2)}{2})

    枚举2r的因子d,对每个d枚举u,然后判断(v^2)是否是完全平方数,以及v与u是否互质。这样求出的答案再乘以4,再加上4(就是圆与坐标轴的交点)就好了。

    #include <iostream>
    #include <cstdio>
    #include <cmath>
    using namespace std;
    inline long long read() {
      long long x = 0; int f = 0; char c = getchar();
      while (c < '0' || c > '9') f |= c == '-', c = getchar();
      while (c >= '0' && c <= '9') x = (x << 1) + (x << 3) + (c ^ 48), c = getchar();
      return f? -x : x;
    }
    
    long long r, ans;
    inline long long gcd(long long x, long long y) {
      return y ? gcd(y, x % y) : x;
    }
    inline bool check(long long u, long long v) {
      long long x = (sqrt(v));//判断是否是完全平方数
      if (v == x * x) return gcd(u, x) == 1;
      return 0;
    }
    inline long long calc(long long x) {
      long long s = 0;
      for (long long i = 1; i * i * 2 < x; ++i)//枚举u
        s += check(i, x - i * i);
      return s;
    }
    int main() {
      r = read();
      for (long long d = 1; d * d <= 2 * r; ++d)//枚举d
        if (2 * r % d == 0)
          ans += calc(2 * r / d) + (d * d == 2 * r? 0 : calc(d));
      printf("%lld
    ", ans * 4 + 4);
      return 0;
    }
    
  • 相关阅读:
    Maven
    Maven
    Maven
    Maven
    Maven
    Maven
    Maven
    Maven
    Maven教程
    SASS
  • 原文地址:https://www.cnblogs.com/kylinbalck/p/11639734.html
Copyright © 2011-2022 走看看