zoukankan      html  css  js  c++  java
  • HDU 1312【DFS】

    Red and Black

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 24708    Accepted Submission(s): 14942


    Problem Description
    There is a rectangular room, covered with square tiles. Each tile is colored either red or black. A man is standing on a black tile. From a tile, he can move to one of four adjacent tiles. But he can't move on red tiles, he can move only on black tiles.
    Write a program to count the number of black tiles which he can reach by repeating the moves described above.
     
    Input
    The input consists of multiple data sets. A data set starts with a line containing two positive integers W and H; W and H are the numbers of tiles in the x- and y- directions, respectively. W and H are not more than 20.
    There are H more lines in the data set, each of which includes W characters. Each character represents the color of a tile as follows.
    '.' - a black tile
    '#' - a red tile
    '@' - a man on a black tile(appears exactly once in a data set)
     
    Output
    For each data set, your program should output a line which contains the number of tiles he can reach from the initial tile (including itself).

    Sample Input
    6 9
    ....#.
    .....#
    ......
    ......
    ......
    ......
    ......
    #@...#
    .#..#.
    11 9
    .#.........
    .#.#######.
    .#.#.....#.
    .#.#.###.#.
    .#.#..@#.#.
    .#.#####.#.
    .#.......#.
    .#########.
    ...........
    11 6
    ..#..#..#..
    ..#..#..#..
    ..#..#..###
    ..#..#..#@.
    ..#..#..#..
    ..#..#..#..
    7 7
    ..#.#..
    ..#.#..
    ###.###
    ...@...
    ###.###
    ..#.#..
    ..#.#..
    0 0
    Sample Output
    45
    59
    6
    13

    题解:

    #include<cstdio>
    #include<cstring>
    #include<queue>
    #include<iostream>
    #define INF 99999999
    using namespace std;
    const int maxn=205;
    char s[maxn][maxn];
    int vis[maxn][maxn];
    int minx=INF;
    int n,m;
    int dir[4][2]={0,1,-1,0,0,-1,1,0};
    int cnt=1;
    void dfs(int x,int y){
        for(int i=0;i<4;i++){
            int tx=x+dir[i][0];
            int ty=y+dir[i][1];
            if(tx<0||tx>=m||ty<0||ty>=n)
                continue;
            if(!vis[tx][ty]&&s[tx][ty]!='#'){
                cnt++;
                vis[tx][ty]=1;
                dfs(tx,ty);
            }
        }
    }
    int main(){
        while(~scanf("%d %d",&n,&m)&&(n+m)){
            memset(vis,0,sizeof vis);
            cnt=1;
            for(int i=0;i<m;i++){
                scanf("%s",s[i]);
            }
            int sx,sy;
            int flag=0;
            for(int i=0;i<m;i++){
                for(int j=0;j<n;j++){
                    if(s[i][j]=='@'){
                        sx=i,sy=j;
                        flag=1;
                        break;
                    }
                }
                if(flag) break;
            }
            vis[sx][sy]=1;
            dfs(sx,sy);
            printf("%d
    ",cnt);
        }
        return 0;
    }
    

  • 相关阅读:
    Linux下的cut选取命令详解
    Linux下的hostname命令详解
    Linux下的sed流编辑器命令详解
    Linux下的设置静态IP命令详解
    模型评估方法
    模型验证方法
    超参数优化方法
    数据集划分方法
    数据预处理:标称型特征的编码和缺失值处理
    数据预处理:规范化(Normalize)和二值化(Binarize)
  • 原文地址:https://www.cnblogs.com/kzbin/p/9205232.html
Copyright © 2011-2022 走看看