zoukankan      html  css  js  c++  java
  • ZOJ 3872 Beauty of Array 连续子序列求和

    Edward has an array A with N integers. He defines the beauty of an array as the summation of all distinct integers in the array. Now Edward wants to know the summation of the beauty of all contiguous subarray of the array A.

    Input

    There are multiple test cases. The first line of input contains an integer T indicating the number of test cases. For each test case:

    The first line contains an integer N (1 <= N <= 100000), which indicates the size of the array. The next line contains N positive integers separated by spaces. Every integer is no larger than 1000000.

    <h4< dd="">Output

    For each case, print the answer in one line.

    <h4< dd="">Sample Input

    3
    5
    1 2 3 4 5
    3
    2 3 3
    4
    2 3 3 2
    

    <h4< dd="">Sample Output

    105
    21
    38

    题目的意思是求一个个连续子序列的和

    以 2 3 3 2 为例讲一下大概吧

    首先以2结尾 那就是 2
    然后以第一个3结尾 这时他们的和为: 2 + 3*2(以3结尾有两种可能:3 2,3) = 8
    然后是以第二个3结尾,这时他们的和为: 2 + 3*2 + (3-2)*3 = 11
    最后是以第二个2结尾,这时他们的和为: 2 + 3*2 + (3-2)*3 + (4-1)*2 = 17 乘以的3,4是因为他们排三四位所以连续序列的可能为3,4种
    将所有的和相加得到最后的和 38

    注意处理时要有技巧,别傻傻的全部相加,注意到前面的就是上面的和,你只需要加每个序列的最后一位的可能和就行

    #include<stdio.h>
    #include<string.h>
    #include<algorithm>
    #include<iostream>
    #include<cmath>
    #define ls (u<<1)
    #define rs (u<<1|1)
    #define maxn 100010
    #define ll long long
    #define INF 1e9
    using namespace std;
    #define max(a,b) (a)>(b)?(a):(b)
    #define min(a,b) (a)<(b)?(a):(b)
    int a[maxn];
    int main(){
        int T;
        scanf("%d",&T);
        while(T--){
            int n;
            memset(a,0,sizeof(a));
            scanf("%d",&n);
            int t;
            ll num=0,sum=0;
            for(int i=1;i<=n;i++){
                scanf("%d",&t);
                num = (i-a[t])*t+num;
                sum += num;
                a[t]=i;
            }
            printf("%lld
    ",sum);
        }
        return 0;
    }
    彼时当年少,莫负好时光。
  • 相关阅读:
    Gradle学习之基础篇
    springmvc上传文件方法及注意事项
    SpringCloud学习之feign
    SpringCloud学习之eureka集群配置
    SpringMvc+Spring+MyBatis 基于注解整合
    SpringBoot学习之SpringBoot执行器
    SpringBoot跨域问题解决方案
    SpringCloud学习之快速搭建分布式配置
    MySQL-Innodb存储结构
    PG-流复制
  • 原文地址:https://www.cnblogs.com/l609929321/p/7295896.html
Copyright © 2011-2022 走看看