Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 18607 | Accepted: 12920 |
Description
In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …
An alternative formula for the Fibonacci sequence is
.
Given an integer n, your goal is to compute the last 4 digits of Fn.
Input
The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.
Output
For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).
Sample Input
0 9 999999999 1000000000 -1
Sample Output
0 34 626 6875
Hint
As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by
.
Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:
.
Source
#include <map> #include <set> #include <stack> #include <cmath> #include <queue> #include <cstdio> #include <vector> #include <string> #include <cstring> #include <iostream> #include <algorithm> #define debug(a) cout << #a << " " << a << endl using namespace std; const int maxn = 1e4 + 10; const int mod = 10000; typedef long long ll; struct matrix { ll a[10][10]; }; matrix base, ans; matrix multip( matrix x, matrix y ) { //求c矩阵的过程 matrix tmp; for( ll i = 0; i < 2; i ++ ) { for( ll j = 0; j < 2; j ++ ) { tmp.a[i][j] = 0; for( ll k = 0; k < 2; k ++ ) { tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] ) % mod; } } } return tmp; } ll qow( ll a, ll b ) { //求数的快速幂,与此题无关 ll sum = 1; while( b ) { if( b&1 ) { sum = sum*a%mod; } a = a*a%mod; b /= 2; } return sum; } ll f( ll x ) { //矩阵快速幂的运算 while( x ) { if( x&1 ) { ans = multip( ans, base ); } base = multip( base, base ); x /= 2; } return ans.a[0][0]; } int main() { ll n; while( cin >> n ) { if( n == -1 ) { break; } memset( ans.a, 0, sizeof(ans.a) ); //初始化a矩阵和b矩阵,根据你所得到的矩阵式初始化 memset( base.a, 0, sizeof(base.a) ); ans.a[0][0] = 1, ans.a[0][1] = 0; base.a[0][0] = base.a[0][1] = base.a[1][0] = 1; if( n == 0 ) { cout << 0 << endl; } else if( n == 1 ) { cout << 1 << endl; } else { cout << f(n-1) << endl; } } return 0; }