zoukankan      html  css  js  c++  java
  • POJ 3070 Fibonacci 矩阵快速幂模板

    Fibonacci
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 18607   Accepted: 12920

    Description

    In the Fibonacci integer sequence, F0 = 0, F1 = 1, and Fn = Fn − 1 + Fn − 2 for n ≥ 2. For example, the first ten terms of the Fibonacci sequence are:

    0, 1, 1, 2, 3, 5, 8, 13, 21, 34, …

    An alternative formula for the Fibonacci sequence is

    .

    Given an integer n, your goal is to compute the last 4 digits of Fn.

    Input

    The input test file will contain multiple test cases. Each test case consists of a single line containing n (where 0 ≤ n ≤ 1,000,000,000). The end-of-file is denoted by a single line containing the number −1.

    Output

    For each test case, print the last four digits of Fn. If the last four digits of Fn are all zeros, print ‘0’; otherwise, omit any leading zeros (i.e., print Fn mod 10000).

    Sample Input

    0
    9
    999999999
    1000000000
    -1

    Sample Output

    0
    34
    626
    6875

    Hint

    As a reminder, matrix multiplication is associative, and the product of two 2 × 2 matrices is given by

    .

    Also, note that raising any 2 × 2 matrix to the 0th power gives the identity matrix:

    .

    Source

     
    题意:求斐波拉契数列,只不过n值很大要用到矩阵快速幂
    分析:这是矩阵快速幂的入门题,借此题写下模板。
    首先我们很容易的得到递推式:f(n) = f(n-1)+f(n-2)
    也很容易的得到他们的矩阵式:
    | f(n-1)  f(n-2)  |   x  | 1  1 |   =  | f(n)  f(n-1) |
    |    0         0     |       | 1  0 |       |   0       0    |
              a                      b                  c
    写下简单的推导过程:首先把右边式子写在矩阵a第一行,把右边式子可能得到的结果写在矩阵c的第一行,a和c剩下的每行都为0,接下来根据矩阵a和矩阵c写出矩阵b。
    得到矩阵式后,就是简单的套用矩阵快速幂的模板了,下面是我的代码
    #include <map>
    #include <set>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <cstring>
    #include <iostream>
    #include <algorithm>
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    const int maxn = 1e4 + 10;
    const int mod = 10000;
    typedef long long ll;
    struct matrix {
        ll a[10][10];
    };
    matrix base, ans;
    matrix multip( matrix x, matrix y ) { //求c矩阵的过程
        matrix tmp;
        for( ll i = 0; i < 2; i ++ ) {
            for( ll j = 0; j < 2; j ++ ) {
                tmp.a[i][j] = 0;
                for( ll k = 0; k < 2; k ++ ) {
                    tmp.a[i][j] = ( tmp.a[i][j] + x.a[i][k] * y.a[k][j] ) % mod;
                }
            }
        }
        return tmp;
    }
    ll qow( ll a, ll b ) { //求数的快速幂,与此题无关
        ll sum = 1;
        while( b ) {
            if( b&1 ) {
                sum = sum*a%mod;
            }
            a = a*a%mod;
            b /= 2;
        }
        return sum;
    }
    ll f( ll x ) {  //矩阵快速幂的运算
        while( x ) {
            if( x&1 ) {
                ans = multip( ans, base );
            }
            base = multip( base, base );
            x /= 2;
        }
        return ans.a[0][0];
    }
    int main() {
        ll n;
        while( cin >> n ) {
            if( n == -1 ) {
                break;
            }
            memset( ans.a, 0, sizeof(ans.a) ); //初始化a矩阵和b矩阵,根据你所得到的矩阵式初始化
            memset( base.a, 0, sizeof(base.a) );
            ans.a[0][0] = 1, ans.a[0][1] = 0;
            base.a[0][0] = base.a[0][1] = base.a[1][0] = 1;
            if( n == 0 ) {
                cout << 0 << endl;
            } else if( n == 1 ) {
                cout << 1 << endl;
            } else {
                cout << f(n-1) << endl;
            }
        }
        return 0;
    }
    

      

    彼时当年少,莫负好时光。
  • 相关阅读:
    002-pythn基础-循环、编码
    001-python3 初识
    confluence6.x安装
    python+ffmpeg切割视频
    Elasticsearch6.x和Kibana6.x的安装
    django基础
    CDH的完全离线安装(ubuntu16)
    python之旅十【第十篇】paramiko模块
    解决 MariaDB无密码就可以登录的问题
    切割日志(mysql,nginx,php tomcat)使用logrotate
  • 原文地址:https://www.cnblogs.com/l609929321/p/9316768.html
Copyright © 2011-2022 走看看