zoukankan      html  css  js  c++  java
  • 2018中国大学生程序设计竞赛

    Dream

    Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)
    Total Submission(s): 1014    Accepted Submission(s): 200
    Special Judge


    Problem Description
    Freshmen frequently make an error in computing the power of a sum of real numbers, which usually origins from an incorrect equation (m+n)p=mp+np, where m,n,p are real numbers. Let's call it ``Beginner's Dream''.

    For instance, (1+4)2=52=25, but 12+42=1725. Moreover, 9+16−−−−−√=25−−√=5, which does not equal 3+4=7

    Fortunately, in some cases when p is a prime, the identity
    (m+n)p=mp+np

    holds true for every pair of non-negative integers m,n which are less than p, with appropriate definitions of addition and multiplication.

    You are required to redefine the rules of addition and multiplication so as to make the beginner's dream realized.

    Specifically, you need to create your custom addition and multiplication, so that when making calculation with your rules the equation (m+n)p=mp+np is a valid identity for all non-negative integers m,n less than p. Power is defined as
    ap={1,ap1a,p=0p>0


    Obviously there exists an extremely simple solution that makes all operation just produce zero. So an extra constraint should be satisfied that there exists an integer q(0<q<p) to make the set {qk|0<k<p,kZ} equal to {k|0<k<p,kZ}. What's more, the set of non-negative integers less than p ought to be closed under the operation of your definitions.

    Hint

    Hint for sample input and output:
    From the table we get 0+1=1, and thus (0+1)2=12=11=1. On the other hand, 02=00=012=11=102+12=0+1=1.
    They are the same.
     
    Input
    The first line of the input contains an positive integer T(T30) indicating the number of test cases.

    For every case, there is only one line contains an integer p(p<210), described in the problem description above. p is guranteed to be a prime.
     
    Output
    For each test case, you should print 2p lines of p integers.

    The j-th(1jp) integer of i-th(1ip) line denotes the value of (i1)+(j1). The j-th(1jp) integer of (p+i)-th(1ip) line denotes the value of (i1)(j1).
     
    Sample Input
    1 2
     
    Sample Output
    0 1 1 0 0 0 0 1
    分析:比赛的时候做出来的队友说的是数论结论题,比赛后我是按照题目意思直接模拟A掉的。。
      根据题目给出的数字p按照题目的意思我们可以得到一个2*p行,p列的矩阵
      其中1<=i<=p,1<=j<=p时:mapn[i][j] = ((i-1)+(j-1))%p
        p+1<=i<=2*p,1<=j<=p时:mapn[i][j] = ((i-1)*(j-1))%p
    AC代码:
    #include <map>
    #include <set>
    #include <stack>
    #include <cmath>
    #include <queue>
    #include <cstdio>
    #include <vector>
    #include <string>
    #include <bitset>
    #include <cstring>
    #include <iomanip>
    #include <iostream>
    #include <algorithm>
    #define ls (r<<1)
    #define rs (r<<1|1)
    #define debug(a) cout << #a << " " << a << endl
    using namespace std;
    typedef long long ll;
    const ll maxn = pow(2,10)+10;
    const double eps = 1e-8;
    const ll mod = 1e9 + 7;
    const ll inf = 1e9;
    const double pi = acos(-1.0);
    ll mapn[2*maxn][maxn];
    int main() {
        ll T, p;
        scanf("%lld",&T);
        while(T--) {
            memset(mapn,0,sizeof(mapn));
            scanf("%lld",&p);
            for( ll i = 1; i <= 2*p; i ++ ) {
                for( ll j = 1; j <= p; j ++ ) {
                    if( i <= p ) {
                        mapn[i][j] = ((i-1)+(j-1))%p;
                    } else {
                        mapn[i][j] = (i-1)*(j-1)%p;
                    }
                    if( j != p ) {
                        printf("%lld ",mapn[i][j]);
                    } else {
                        printf("%lld
    ",mapn[i][j]);
                    }
                }
            }
        }
        return 0;
    }
    

      

  • 相关阅读:
    每日总结
    团队冲刺9
    团队冲刺8
    团队冲刺7
    团队冲刺6
    团队冲刺5
    团队冲刺4
    团对冲刺3
    团队冲刺2
    每日博客
  • 原文地址:https://www.cnblogs.com/l609929321/p/9537614.html
Copyright © 2011-2022 走看看