在 N * N 的网格中,我们放置了一些与 x,y,z 三轴对齐的 1 * 1 * 1 立方体。
每个值 v = grid[i][j] 表示 v 个正方体叠放在单元格 (i, j) 上。
现在,我们查看这些立方体在 xy、yz 和 zx 平面上的投影。
投影就像影子,将三维形体映射到一个二维平面上。
在这里,从顶部、前面和侧面看立方体时,我们会看到“影子”。
返回所有三个投影的总面积。
示例 1:
输入:[[2]] 输出:5
示例 2:
输入:[[1,2],[3,4]] 输出:17 解释: 这里有该形体在三个轴对齐平面上的三个投影(“阴影部分”)。
示例 3:
输入:[[1,0],[0,2]] 输出:8
示例 4:
输入:[[1,1,1],[1,0,1],[1,1,1]] 输出:14
示例 5:
输入:[[2,2,2],[2,1,2],[2,2,2]] 输出:21
提示:
- 1 <= grid.length = grid[0].length <= 50
- 0 <= grid[i][j] <= 50
投影在xy平面上,表示与z轴无关,
投影在yz平面上,表示与x轴无关
投影在xz平面上,表示与y轴无关
class Solution {
public:
int projectionArea(vector<vector<int> >& grid)
{
int xy = 0;
int r = grid.size();
int c = grid[0].size();
map<int, int> xz;
map<int, int> yz;
for(int i = 0; i < r; i++)
{
for(int j = 0; j < c; j++)
{
if(grid[i][j] > 0)
{
xy++;
if(xz[i] != 0)
{
xz[i] = max(grid[i][j], xz[i]);
}
else
{
xz[i] = grid[i][j];
}
if(yz[j] != 0)
{
yz[j] = max(grid[i][j], yz[j]);
}
else
{
yz[j] = grid[i][j];
}
}
}
}
int sum = xy;
for(map<int, int> :: iterator itr = xz.begin(); itr != xz.end(); itr++)
{
sum += itr ->second;
}
for(map<int, int> :: iterator itr = yz.begin(); itr != yz.end(); itr++)
{
sum += itr ->second;
}
return sum;
}
};