zoukankan      html  css  js  c++  java
  • LeetCode Word Search II

    Given a 2D board and a list of words from the dictionary, find all words in the board.

    Each word must be constructed from letters of sequentially adjacent cell, where "adjacent" cells are those horizontally or vertically neighboring. The same letter cell may not be used more than once in a word.

    For example,
    Given words = ["oath","pea","eat","rain"] and board =

    [
      ['o','a','a','n'],
      ['e','t','a','e'],
      ['i','h','k','r'],
      ['i','f','l','v']
    ]
    

    Return ["eat","oath"].

    Note:
    You may assume that all inputs are consist of lowercase letters a-z.

    click to show hint.

    You would need to optimize your backtracking to pass the larger test. Could you stop backtracking earlier?

    If the current candidate does not exist in all words' prefix, you could stop backtracking immediately. What kind of data structure could answer such query efficiently? Does a hash table work? Why or why not? How about a Trie? If you would like to learn how to implement a basic trie, please work on this problem: Implement Trie (Prefix Tree) first.

    class Node {
    public:
        Node* child[26];
        int count;
    
        Node() {
            count=0;
            for (int i=0; i<26; i++) {
                child[i] = NULL;
            }
        }
    };
    
    class Trie {
    private:
        Node root;
        static void insert_aux(Node* node, const char* s, int idx, int len) {
            if (node == NULL) {
                return;
            }
            if (idx == len) {
                node->count++;
                return;
            }
            char ch = s[idx] - 'a';
            if (node->child[ch] == NULL) {
                node->child[ch] = new Node();
            }
            insert_aux(node->child[ch], s, idx + 1, len);
        }
    
        static Node* search(Node* node, const char* str, int len, int idx) {
            if (node == NULL || str == NULL) {
                return NULL;
            }
            if (len == idx) {
                return node;
            }
            Node* ch = node->child[str[idx] - 'a'];
            return search(ch, str, len, idx + 1);
        }
    public:
        void insert(string word) {
            insert_aux(&root, word.c_str(), 0, word.size());
        }
    
        void insert(const char* str, int len) {
            insert_aux(&root, str, 0, len);
        }
    
        Node* search(string word) {
            return search(word.c_str(), word.size());
        }
    
        static Node* search(Node* node, char* str, int len) {
            return search(node, str, len, 0);
        }
    
        Node* search(const char* str, int len) {
            return search(&root, str, len, 0);
        }
        
        Node* getRoot() { return &root;}
    };
    
    
    class Solution {
    private:
        vector<string> res;
    public:
        vector<string> findWords(vector<vector<char>>& board, vector<string>& words) {
            res.clear();
            
            int rows = board.size();
            if (rows < 1) {
                return res;
            }
            int cols = board[0].size();
            if (cols < 1) {
                return res;
            }
            
            // initialize trie for fast word prefix lookup
            Trie trie;
            for (string& s : words) {
                trie.insert(s);
            }
            string path;
            for (int i=0; i<rows; i++) {
                for (int j=0; j<cols; j++) {
                    dfs(board, j, i, trie.getRoot(), path);        
                }
            }
            
            return res;
        }
        
        void dfs(vector<vector<char> >& board, int x, int y, Node* node, string& path) {
            if (node == NULL) {
                return;
            } else if (node->count > 0){
                res.push_back(path);
                // so we won't add one word more than once.
                node->count = 0;
            }
            
            int rows = board.size();
            int cols = board[0].size();
            
            if (x >= cols || x < 0 || y >= rows || y < 0) {
                return;
            }
            char ch = board[y][x];
            // current position is in dfs path, so don't search again
            if (ch == 0) {
                return;
            }
            
            Node* next = node->child[ch - 'a'];
            // mark on board
            board[y][x] = 0;
            path.push_back(ch);
    
            int dx[] = {1, 0, -1, 0};
            int dy[] = {0, 1, 0, -1};
            for (int i=0; i<4; i++) {
                dfs(board, x + dx[i], y + dy[i], next, path);
            }
            // restore character
            path.pop_back();
            board[y][x] = ch;
        }
    };

    先写了个字典树,有专门的实现字典树的题目,做过一次顺利许多。dfs内部的一些判断可以提前进行,不过为了形式上整齐一些没有这样做

  • 相关阅读:
    Partition算法及Partition算法用于快速排序
    任意增减文件上传栏
    java版的下雪,大家圣诞快乐
    Java聊天室[长轮询]
    java汉字转拼音以及得到首字母通用方法
    RTree算法Java实现 JSI RTree Library的调用实例 标签:jsi-rtree-library
    JAVA压缩 解压缩zip 并解决linux下中文乱码
    Java 线程转储
    用 Java 抓取优酷、土豆等视频
    Java Web 项目打包脚本
  • 原文地址:https://www.cnblogs.com/lailailai/p/4573927.html
Copyright © 2011-2022 走看看