zoukankan      html  css  js  c++  java
  • LintCode Topological Sorting

    Given an directed graph, a topological order of the graph nodes is defined as follow:
    For each directed edge A -> B in graph, A must before B in the order list.
    The first node in the order can be any node in the graph with no nodes direct to it.
    Find any topological order for the given graph.
    Have you met this question in a real interview? Yes
    Example
    For graph as follow:
    picture
    The topological order can be:
    [0, 1, 2, 3, 4, 5]
    [0, 2, 3, 1, 5, 4]
    ...
    Note
    You can assume that there is at least one topological order in the graph.
    Challenge
    Can you do it in both BFS and DFS?

    首先给出一个DFS的,这个以前倒是没这么写

    /**
     * Definition for Directed graph.
     * struct DirectedGraphNode {
     *     int label;
     *     vector<DirectedGraphNode *> neighbors;
     *     DirectedGraphNode(int x) : label(x) {};
     * };
     */
    class Solution {
    private:
        unordered_set<DirectedGraphNode*> visited;
        
    public:
        /**
         * @param graph: A list of Directed graph node
         * @return: Any topological order for the given graph.
         */
        vector<DirectedGraphNode*> topSort(vector<DirectedGraphNode*> graph) {
            // write your code here
            visited.clear();
            
            vector<DirectedGraphNode*> path;
            
            for (auto node : graph) {
                dfs(node, path);
            }
            reverse(path.begin(), path.end());
            
            return path;
        }
        
        void dfs(DirectedGraphNode* node, vector<DirectedGraphNode*>& path) {
            if (visited.count(node) > 0) {
                return;
            }
            visited.insert(node);
            
            for (auto n : node->neighbors) {
                dfs(n, path);
            }
            
            path.push_back(node);
        }
    };
    
  • 相关阅读:
    bzoj4195 [Noi2015]程序自动分析
    bzoj4236 JOIOJI hash 模拟
    bzoj1012 [JSOI2008]最大数maxnumber
    day 4 名片管理系统 -函数版
    day 3 局部变量 全局变量
    day 2 函数的嵌套
    day1 函数 (独立功能代码块)
    day 14 元组
    day 13 字典dict 操作
    day 12 列表字典 补充
  • 原文地址:https://www.cnblogs.com/lailailai/p/4873177.html
Copyright © 2011-2022 走看看