zoukankan      html  css  js  c++  java
  • 阿里云Redis的开发规范,值得收藏!

    本文主要介绍在使用阿里云Redis的开发规范,从下面几个方面进行说明。

    • 键值设计

    • 命令使用

    • 客户端使用

    • 相关工具

    通过本文的介绍可以减少使用Redis过程带来的问题。

    一、键值设计

    1、key名设计

    可读性和可管理性

    以业务名(或数据库名)为前缀(防止key冲突),用冒号分隔,比如业务名:表名:id

    1. ugc:video:1

    简洁性

    保证语义的前提下,控制key的长度,当key较多时,内存占用也不容忽视,例如:

    1. user:{uid}:friends:messages:{mid}简化为u:{uid}:fr:m:{mid}。

    不要包含特殊字符

    反例:包含空格、换行、单双引号以及其他转义字符

    2、value设计

    拒绝bigkey

    防止网卡流量、慢查询,string类型控制在10KB以内,hash、list、set、zset元素个数不要超过5000。

    反例:一个包含200万个元素的list。

    非字符串的bigkey,不要使用del删除,使用hscan、sscan、zscan方式渐进式删除,同时要注意防止bigkey过期时间自动删除问题(例如一个200万的zset设置1小时过期,会触发del操作,造成阻塞,而且该操作不会不出现在慢查询中(latency可查)),查找方法和删除方法

    选择适合的数据类型

    例如:实体类型(要合理控制和使用数据结构内存编码优化配置,例如ziplist,但也要注意节省内存和性能之间的平衡)

    反例:

    1. set user:1:name tom

    2. set user:1:age 19

    3. set user:1:favor football

    正例:

    1. hmset user:1 name tom age 19 favor football

    控制key的生命周期

    redis不是垃圾桶,建议使用expire设置过期时间(条件允许可以打散过期时间,防止集中过期),不过期的数据重点关注idletime。

    二、命令使用

    1、O(N)命令关注N的数量

    例如hgetall、lrange、smembers、zrange、sinter等并非不能使用,但是需要明确N的值。有遍历的需求可以使用hscan、sscan、zscan代替。

    2、禁用命令

    禁止线上使用keys、flushall、flushdb等,通过redis的rename机制禁掉命令,或者使用scan的方式渐进式处理。

    3、合理使用select

    redis的多数据库较弱,使用数字进行区分,很多客户端支持较差,同时多业务用多数据库实际还是单线程处理,会有干扰。

    4、使用批量操作提高效率
    1. 原生命令:例如mget、mset。

    2. 非原生命令:可以使用pipeline提高效率。

    但要注意控制一次批量操作的元素个数(例如500以内,实际也和元素字节数有关)。

    注意两者不同:

    1. 原生是原子操作,pipeline是非原子操作。

    2. pipeline可以打包不同的命令,原生做不到

    3. pipeline需要客户端和服务端同时支持。

    5、不建议过多使用Redis事务功能

    Redis的事务功能较弱(不支持回滚),而且集群版本(自研和官方)要求一次事务操作的key必须在一个slot上(可以使用hashtag功能解决)

    6、Redis集群版本在使用Lua上有特殊要求

    1、所有key都应该由 KEYS 数组来传递,redis.call/pcall 里面调用的redis命令,key的位置,必须是KEYS array, 否则直接返回error,"-ERR bad lua script for redis cluster, all the keys that the script uses should be passed using the KEYS arrayrn" 2、所有key,必须在1个slot上,否则直接返回error, "-ERR eval/evalsha command keys must in same slotrn"

    7、monitor命令

    必要情况下使用monitor命令时,要注意不要长时间使用。

    三、客户端使用

    1、避免多个应用使用一个Redis实例

    不相干的业务拆分,公共数据做服务化。

    2、使用连接池

    可以有效控制连接,同时提高效率,标准使用方式:

    1. 执行命令如下:

    2. Jedis jedis = null;

    3. try {

    4. jedis = jedisPool.getResource();

    5. //具体的命令

    6. jedis.executeCommand()

    7. } catch (Exception e) {

    8. logger.error("op key {} error: " + e.getMessage(), key, e);

    9. } finally {

    10. //注意这里不是关闭连接,在JedisPool模式下,Jedis会被归还给资源池。

    11. if (jedis != null)

    12. jedis.close();

    13. }

    3、熔断功能

    高并发下建议客户端添加熔断功能(例如netflix hystrix)

    4、合理的加密

    设置合理的密码,如有必要可以使用SSL加密访问(阿里云Redis支持)

    5、淘汰策略

    根据自身业务类型,选好maxmemory-policy(最大内存淘汰策略),设置好过期时间。

    默认策略是volatile-lru,即超过最大内存后,在过期键中使用lru算法进行key的剔除,保证不过期数据不被删除,但是可能会出现OOM问题。

    其他策略如下:

    • allkeys-lru:根据LRU算法删除键,不管数据有没有设置超时属性,直到腾出足够空间为止。

    • allkeys-random:随机删除所有键,直到腾出足够空间为止。

    • volatile-random:随机删除过期键,直到腾出足够空间为止。

    • volatile-ttl:根据键值对象的ttl属性,删除最近将要过期数据。如果没有,回退到noeviction策略。

    • noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error) OOM command not allowed when used memory",此时Redis只响应读操作。

    四、相关工具

    1、数据同步

    redis间数据同步可以使用:redis-port

    2、big key搜索

    redis大key搜索工具

    3、热点key寻找

    内部实现使用monitor,所以建议短时间使用facebook的redis-faina 阿里云Redis已经在内核层面解决热点key问题

    五、删除bigkey

    1. 下面操作可以使用pipeline加速。

    2. redis 4.0已经支持key的异步删除,欢迎使用。

    1、Hash删除: hscan + hdel
    1. public void delBigHash(String host, int port, String password, String bigHashKey) {

    2. Jedis jedis = new Jedis(host, port);

    3. if (password != null && !"".equals(password)) {

    4. jedis.auth(password);

    5. }

    6. ScanParams scanParams = new ScanParams().count(100);

    7. String cursor = "0";

    8. do {

    9. ScanResult<Entry<String, String>> scanResult = jedis.hscan(bigHashKey, cursor, scanParams);

    10. List<Entry<String, String>> entryList = scanResult.getResult();

    11. if (entryList != null && !entryList.isEmpty()) {

    12. for (Entry<String, String> entry : entryList) {

    13. jedis.hdel(bigHashKey, entry.getKey());

    14. }

    15. }

    16. cursor = scanResult.getStringCursor();

    17. } while (!"0".equals(cursor));

    18. //删除bigkey

    19. jedis.del(bigHashKey);

    20. }

    2、List删除: ltrim
    1. public void delBigList(String host, int port, String password, String bigListKey) {

    2. Jedis jedis = new Jedis(host, port);

    3. if (password != null && !"".equals(password)) {

    4. jedis.auth(password);

    5. }

    6. long llen = jedis.llen(bigListKey);

    7. int counter = 0;

    8. int left = 100;

    9. while (counter < llen) {

    10. //每次从左侧截掉100个

    11. jedis.ltrim(bigListKey, left, llen);

    12. counter += left;

    13. }

    14. //最终删除key

    15. jedis.del(bigListKey);

    16. }

    3、Set删除: sscan + srem
    1. public void delBigSet(String host, int port, String password, String bigSetKey) {

    2. Jedis jedis = new Jedis(host, port);

    3. if (password != null && !"".equals(password)) {

    4. jedis.auth(password);

    5. }

    6. ScanParams scanParams = new ScanParams().count(100);

    7. String cursor = "0";

    8. do {

    9. ScanResult<String> scanResult = jedis.sscan(bigSetKey, cursor, scanParams);

    10. List<String> memberList = scanResult.getResult();

    11. if (memberList != null && !memberList.isEmpty()) {

    12. for (String member : memberList) {

    13. jedis.srem(bigSetKey, member);

    14. }

    15. }

    16. cursor = scanResult.getStringCursor();

    17. } while (!"0".equals(cursor));

    18. //删除bigkey

    19. jedis.del(bigSetKey);

    20. }

    4、SortedSet删除: zscan + zrem
    1. public void delBigZset(String host, int port, String password, String bigZsetKey) {

    2. Jedis jedis = new Jedis(host, port);

    3. if (password != null && !"".equals(password)) {

    4. jedis.auth(password);

    5. }

    6. ScanParams scanParams = new ScanParams().count(100);

    7. String cursor = "0";

    8. do {

    9. ScanResult<Tuple> scanResult = jedis.zscan(bigZsetKey, cursor, scanParams);

    10. List<Tuple> tupleList = scanResult.getResult();

    11. if (tupleList != null && !tupleList.isEmpty()) {

    12. for (Tuple tuple : tupleList) {

    13. jedis.zrem(bigZsetKey, tuple.getElement());

    14. }

    15. }

    16. cursor = scanResult.getStringCursor();

    17. } while (!"0".equals(cursor));

    18. //删除bigkey

    19. jedis.del(bigZsetKey);

    20. }

  • 相关阅读:
    jsp生成xml文件示例
    jsp分页显示
    Spring AOP学习笔记
    让leeon不再眷念马桶——书评《精通正则表达式》
    用JSP实现上传文件的两种方法
    oracle sql性能优化
    Iron Speed Designer 4.2.2学习
    再议《JavaScript代码优化一例》
    有关《大道至简》的几点讨论~
    有源则至清——我读《移山之道》
  • 原文地址:https://www.cnblogs.com/lanblogs/p/15161859.html
Copyright © 2011-2022 走看看