zoukankan      html  css  js  c++  java
  • 测试AtomicInteger与普通int值在多线程下的递增操作

    日期: 2014年6月10日

    作者: 铁锚

    Java针对多线程下的数值安全计数器设计了一些类,这些类叫做原子类,其中一部分如下:

    java.util.concurrent.atomic.AtomicBoolean;
    java.util.concurrent.atomic.AtomicInteger;
    java.util.concurrent.atomic.AtomicLong;
    java.util.concurrent.atomic.AtomicReference;
    下面是一个对比  AtomicInteger 与 普通 int 值在多线程下的递增测试,使用的是 junit4;

    完整代码:

    package test.java;
    
    import java.util.concurrent.CountDownLatch;
    import java.util.concurrent.atomic.AtomicInteger;
    
    import org.junit.Assert;
    import org.junit.Before;
    import org.junit.Test;
    
    /**
     * 测试AtomicInteger与普通int值在多线程下的递增操作
     */
    public class TestAtomic {
    
    	// 原子Integer递增对象
    	public static AtomicInteger counter_integer;// = new AtomicInteger(0);
    	// 一个int类型的变量
    	public static int count_int = 0;
    
    	@Before
    	public void setUp() {
    		// 所有测试开始之前执行初始设置工作
    		counter_integer = new AtomicInteger(0);
    	}
    
    	@Test
    	public void testAtomic() throws InterruptedException {
    		// 创建的线程数量
    		int threadCount = 100;
    		// 其他附属线程内部循环多少次
    		int loopCount = 10000600;
    		// 控制附属线程的辅助对象;(其他await的线程先等着主线程喊开始)
    		CountDownLatch latch_1 = new CountDownLatch(1);
    		// 控制主线程的辅助对象;(主线程等着所有附属线程都运行完毕再继续)
    		CountDownLatch latch_n = new CountDownLatch(threadCount);
    		// 创建并启动其他附属线程
    		for (int i = 0; i < threadCount; i++) {
    			Thread thread = new AtomicIntegerThread(latch_1, latch_n, loopCount);
    			thread.start();
    		}
    		long startNano = System.nanoTime();
    		// 让其他等待的线程统一开始
    		latch_1.countDown();
    		// 等待其他线程执行完
    		latch_n.await();
    		//
    
    		long endNano = System.nanoTime();
    		int sum = counter_integer.get();
    		//
    		Assert.assertEquals("sum 不等于 threadCount * loopCount,测试失败",
    				sum, threadCount * loopCount);
    		System.out.println("--------testAtomic(); 预期两者相等------------");
    		System.out.println("耗时: " + ((endNano - startNano) / (1000 * 1000)) + "ms");
    		System.out.println("threadCount = " + (threadCount) + ";");
    		System.out.println("loopCount = " + (loopCount) + ";");
    		System.out.println("sum = " + (sum) + ";");
    	}
    
    	@Test
    	public void testIntAdd() throws InterruptedException {
    		// 创建的线程数量
    		int threadCount = 100;
    		// 其他附属线程内部循环多少次
    		int loopCount = 10000600;
    		// 控制附属线程的辅助对象;(其他await的线程先等着主线程喊开始)
    		CountDownLatch latch_1 = new CountDownLatch(1);
    		// 控制主线程的辅助对象;(主线程等着所有附属线程都运行完毕再继续)
    		CountDownLatch latch_n = new CountDownLatch(threadCount);
    		// 创建并启动其他附属线程
    		for (int i = 0; i < threadCount; i++) {
    			Thread thread = new IntegerThread(latch_1, latch_n, loopCount);
    			thread.start();
    		}
    		long startNano = System.nanoTime();
    		// 让其他等待的线程统一开始
    		latch_1.countDown();
    		// 等待其他线程执行完
    		latch_n.await();
    		//
    		long endNano = System.nanoTime();
    		int sum = count_int;
    		//
    		Assert.assertNotEquals(
    				"sum 等于 threadCount * loopCount,testIntAdd()测试失败", 
    				sum, threadCount * loopCount);
    		System.out.println("-------testIntAdd(); 预期两者不相等---------");
    		System.out.println("耗时: " + ((endNano - startNano) / (1000*1000))+ "ms");
    		System.out.println("threadCount = " + (threadCount) + ";");
    		System.out.println("loopCount = " + (loopCount) + ";");
    		System.out.println("sum = " + (sum) + ";");
    	}
    
    	// 线程
    	class AtomicIntegerThread extends Thread {
    		private CountDownLatch latch = null;
    		private CountDownLatch latchdown = null;
    		private int loopCount;
    
    		public AtomicIntegerThread(CountDownLatch latch,
    				CountDownLatch latchdown, int loopCount) {
    			this.latch = latch;
    			this.latchdown = latchdown;
    			this.loopCount = loopCount;
    		}
    
    		@Override
    		public void run() {
    			// 等待信号同步
    			try {
    				this.latch.await();
    			} catch (InterruptedException e) {
    				e.printStackTrace();
    			}
    			//
    			for (int i = 0; i < loopCount; i++) {
    				counter_integer.getAndIncrement();
    			}
    			// 通知递减1次
    			latchdown.countDown();
    		}
    	}
    
    	// 线程
    	class IntegerThread extends Thread {
    		private CountDownLatch latch = null;
    		private CountDownLatch latchdown = null;
    		private int loopCount;
    
    		public IntegerThread(CountDownLatch latch, 
    				CountDownLatch latchdown, int loopCount) {
    			this.latch = latch;
    			this.latchdown = latchdown;
    			this.loopCount = loopCount;
    		}
    
    		@Override
    		public void run() {
    			// 等待信号同步
    			try {
    				this.latch.await();
    			} catch (InterruptedException e) {
    				e.printStackTrace();
    			}
    			//
    			for (int i = 0; i < loopCount; i++) {
    				count_int++;
    			}
    			// 通知递减1次
    			latchdown.countDown();
    		}
    	}
    }

    普通PC机上的执行结果类似如下:

    --------------testAtomic(); 预期两者相等-------------------
    耗时: 85366ms
    threadCount = 100;
    loopCount = 10000600;
    sum = 1000060000;
    --------------testIntAdd(); 预期两者不相等-------------------
    耗时: 1406ms
    threadCount = 100;
    loopCount = 10000600;
    sum = 119428988;

    从中可以看出, AtomicInteger操作 与 int操作的效率大致相差在50-80倍上下,当然,int很不消耗时间,这个对比只是提供一个参照。

    如果确定是单线程执行,那应该使用 int; 而int在多线程下的操作执行的效率还是蛮高的, 10亿次只花了1.5秒钟;

     (假设CPU是 2GHZ,双核4线程,理论最大8GHZ,则每秒理论上有80亿个时钟周期, 

    10亿次Java的int增加消耗了1.5秒,即 120亿次运算, 算下来每次循环消耗CPU周期 12个; 

    个人觉得效率不错, C 语言也应该需要4个以上的时钟周期(判断,执行内部代码,自增判断,跳转)

    前提是: JVM和CPU没有进行激进优化.

    )

    而 AtomicInteger 效率其实也不低,10亿次消耗了80秒, 那100万次大约也就是千分之一,80毫秒的样子.

  • 相关阅读:
    个人介绍
    C++ 之 第四课 C++中的运算符、表达式
    Delphi 之 第六课 过程与函数
    Delphi 之 第五课 流程语句
    VB 之 第三课 VB API 字体函数的应用
    C++ 之 第三课 C++数据类型
    Delphi 之 第四讲 自定义数据类型
    Delphi 之 第三课 详解数据类型
    C++ 之 第二课 C++类、函数的讲解
    VB API 第二课 之 字符串大小写转换
  • 原文地址:https://www.cnblogs.com/lanzhi/p/6467010.html
Copyright © 2011-2022 走看看