zoukankan      html  css  js  c++  java
  • 把Spring Cloud Data Flow部署在Kubernetes上,再跑个任务试试

    1 前言

    欢迎访问南瓜慢说 www.pkslow.com获取更多精彩文章!

    Spring Cloud Data Flow在本地跑得好好的,为什么要部署在Kubernetes上呢?主要是因为Kubernetes能提供更灵活的微服务管理;在集群上跑,会更安全稳定、更合理利用物理资源。

    Spring Cloud Data Flow入门简介请参考:Spring Cloud Data Flow初体验,以Local模式运行

    2 部署Data Flow到Kubernetes

    以简单为原则,我们依然是基于Batch任务,不部署与Stream相关的组件。

    2.1 下载GitHub代码

    我们要基于官方提供的部署代码进行修改,先把官方代码clone下来:

    $ git clone https://github.com/spring-cloud/spring-cloud-dataflow.git
    

    我们切换到最新稳定版本的代码版本:

    $ git checkout v2.5.3.RELEASE
    

    2.2 创建权限账号

    为了让Data Flow Server有权限来跑任务,能在Kubernetes管理资源,如新建Pod等,所以要创建对应的权限账号。这部分代码与源码一致,不需要修改:

    (1)server-roles.yaml

    kind: Role
    apiVersion: rbac.authorization.k8s.io/v1
    metadata:
      name: scdf-role
    rules:
      - apiGroups: [""]
        resources: ["services", "pods", "replicationcontrollers", "persistentvolumeclaims"]
        verbs: ["get", "list", "watch", "create", "delete", "update"]
      - apiGroups: [""]
        resources: ["configmaps", "secrets", "pods/log"]
        verbs: ["get", "list", "watch"]
      - apiGroups: ["apps"]
        resources: ["statefulsets", "deployments", "replicasets"]
        verbs: ["get", "list", "watch", "create", "delete", "update", "patch"]
      - apiGroups: ["extensions"]
        resources: ["deployments", "replicasets"]
        verbs: ["get", "list", "watch", "create", "delete", "update", "patch"]
      - apiGroups: ["batch"]
        resources: ["cronjobs", "jobs"]
        verbs: ["create", "delete", "get", "list", "watch", "update", "patch"]
    

    (2)server-rolebinding.yaml

    kind: RoleBinding
    apiVersion: rbac.authorization.k8s.io/v1beta1
    metadata:
      name: scdf-rb
    subjects:
    - kind: ServiceAccount
      name: scdf-sa
    roleRef:
      kind: Role
      name: scdf-role
      apiGroup: rbac.authorization.k8s.io
    

    (3)service-account.yaml

    apiVersion: v1
    kind: ServiceAccount
    metadata:
      name: scdf-sa
    

    执行以下命令,创建对应账号:

    $ kubectl create -f src/kubernetes/server/server-roles.yaml 
    $ kubectl create -f src/kubernetes/server/server-rolebinding.yaml 
    $ kubectl create -f src/kubernetes/server/service-account.yaml 
    

    执行完成后,可以检查一下:

    $ kubectl get role
    NAME        AGE
    scdf-role   119m
    
    $ kubectl get rolebinding
    NAME      AGE
    scdf-rb   117m
    
    $ kubectl get serviceAccount
    NAME      SECRETS   AGE
    default   1         27d
    scdf-sa   1         117m
    

    2.3 部署MySQL

    可以选择其它数据库,如果本来就有数据库,可以不用部署,在部署Server的时候改一下配置就好了。这里跟着官方的Guide来。为了保证部署不会因为镜像下载问题而失败,我提前下载了镜像:

    $ docker pull mysql:5.7.25
    

    MySQLyaml文件也不需要修改,直接执行以下命令即可:

    $ kubectl create -f src/kubernetes/mysql/
    

    执行完后检查一下:

    $ kubectl get Secret
    NAME                  TYPE                                  DATA   AGE
    default-token-jhgfp   kubernetes.io/service-account-token   3      27d
    mysql                 Opaque                                2      98m
    scdf-sa-token-wmgk6   kubernetes.io/service-account-token   3      123m
    
    $ kubectl get PersistentVolumeClaim
    NAME    STATUS   VOLUME                                     CAPACITY   ACCESS MODES   STORAGECLASS   AGE
    mysql   Bound    pvc-e95b495a-bea5-40ee-9606-dab8d9b0d65c   8Gi        RWO            hostpath       98m
    
    $ kubectl get Deployment
    NAME          READY   UP-TO-DATE   AVAILABLE   AGE
    mysql         1/1     1            1           98m
    
    $ kubectl get Service
    NAME          TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)        AGE
    mysql         ClusterIP   10.98.243.130   <none>        3306/TCP       98m
    

    2.4 部署Data Flow Server

    2.4.1 修改配置文件server-config.yaml

    删除掉不用的配置,主要是PrometheusGrafana的配置,结果如下:

    apiVersion: v1
    kind: ConfigMap
    metadata:
      name: scdf-server
      labels:
        app: scdf-server
    data:
      application.yaml: |-
        spring:
          cloud:
            dataflow:
              task:
                platform:
                  kubernetes:
                    accounts:
                      default:
                        limits:
                          memory: 1024Mi
          datasource:
            url: jdbc:mysql://${MYSQL_SERVICE_HOST}:${MYSQL_SERVICE_PORT}/mysql
            username: root
            password: ${mysql-root-password}
            driverClassName: org.mariadb.jdbc.Driver
            testOnBorrow: true
            validationQuery: "SELECT 1"
    

    2.4.2 修改server-svc.yaml

    因为我是本地运行的Kubernetes,所以把Service类型从LoadBalancer改为NodePort,并配置端口为30093

    kind: Service
    apiVersion: v1
    metadata:
      name: scdf-server
      labels:
        app: scdf-server
        spring-deployment-id: scdf
    spec:
      # If you are running k8s on a local dev box or using minikube, you can use type NodePort instead
      type: NodePort
      ports:
        - port: 80
          name: scdf-server
          nodePort: 30093
      selector:
        app: scdf-server
    

    2.4.3 修改server-deployment.yaml

    主要把Stream相关的去掉,如SPRING_CLOUD_SKIPPER_CLIENT_SERVER_URI配置项:

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: scdf-server
      labels:
        app: scdf-server
    spec:
      selector:
        matchLabels:
          app: scdf-server
      replicas: 1
      template:
        metadata:
          labels:
            app: scdf-server
        spec:
          containers:
          - name: scdf-server
            image: springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE
            imagePullPolicy: IfNotPresent
            volumeMounts:
              - name: database
                mountPath: /etc/secrets/database
                readOnly: true
            ports:
            - containerPort: 80
            livenessProbe:
              httpGet:
                path: /management/health
                port: 80
              initialDelaySeconds: 45
            readinessProbe:
              httpGet:
                path: /management/info
                port: 80
              initialDelaySeconds: 45
            resources:
              limits:
                cpu: 1.0
                memory: 2048Mi
              requests:
                cpu: 0.5
                memory: 1024Mi
            env:
            - name: KUBERNETES_NAMESPACE
              valueFrom:
                fieldRef:
                  fieldPath: "metadata.namespace"
            - name: SERVER_PORT
              value: '80'
            - name: SPRING_CLOUD_CONFIG_ENABLED
              value: 'false'
            - name: SPRING_CLOUD_DATAFLOW_FEATURES_ANALYTICS_ENABLED
              value: 'true'
            - name: SPRING_CLOUD_DATAFLOW_FEATURES_SCHEDULES_ENABLED
              value: 'true'
            - name: SPRING_CLOUD_KUBERNETES_SECRETS_ENABLE_API
              value: 'true'
            - name: SPRING_CLOUD_KUBERNETES_SECRETS_PATHS
              value: /etc/secrets
            - name: SPRING_CLOUD_KUBERNETES_CONFIG_NAME
              value: scdf-server
            - name: SPRING_CLOUD_DATAFLOW_SERVER_URI
              value: 'http://${SCDF_SERVER_SERVICE_HOST}:${SCDF_SERVER_SERVICE_PORT}'
              # Add Maven repo for metadata artifact resolution for all stream apps
            - name: SPRING_APPLICATION_JSON
              value: "{ "maven": { "local-repository": null, "remote-repositories": { "repo1": { "url": "https://repo.spring.io/libs-snapshot"} } } }"
          initContainers:
          - name: init-mysql-wait
            image: busybox
            command: ['sh', '-c', 'until nc -w3 -z mysql 3306; do echo waiting for mysql; sleep 3; done;']
          serviceAccountName: scdf-sa
          volumes:
            - name: database
              secret:
                secretName: mysql
    

    2.4.4 部署Server

    完成文件修改后,就可以执行以下命令部署了:

    # 提前下载镜像
    $ docker pull springcloud/spring-cloud-dataflow-server:2.5.3.RELEASE
    
    # 部署Data Flow Server
    $ kubectl create -f src/kubernetes/server/server-config.yaml 
    $ kubectl create -f src/kubernetes/server/server-svc.yaml 
    $ kubectl create -f src/kubernetes/server/server-deployment.yaml 
    

    执行完成,没有错误就可以访问:http://localhost:30093/dashboard/

    3 运行一个Task

    检验是否部署成功最简单的方式就是跑一个任务试试。还是按以前的步骤,先注册应用,再定义Task,然后执行。

    我们依旧使用官方已经准备好的应用,但要注意这次我们选择是的Docker格式,而不是jar包了。

    成功执行后,查看KubernetesDashboard,能看到一个刚创建的Pod

    4 总结

    本文通过一步步讲解,把Spring Cloud Data Flow成功部署在了Kubernetes上,并成功在Kubenetes上跑了一个任务,再也不再是Local本地单机模式了。


    欢迎关注微信公众号<南瓜慢说>,将持续为你更新...

    多读书,多分享;多写作,多整理。

  • 相关阅读:
    [HDU6793] Tokitsukaze and Colorful Tree
    [NOI2020]命运
    [NOI2020]美食家
    模拟9
    晚测2
    模拟8
    联考4
    模拟7
    模拟6
    关于数论
  • 原文地址:https://www.cnblogs.com/larrydpk/p/13424280.html
Copyright © 2011-2022 走看看