zoukankan      html  css  js  c++  java
  • 【R】数据结构

    之前一阵子,在EDX上学习了R语言的一门基础课程,这里做个总结。这门课程主要侧重于R的数据结构的介绍,当然也介绍了它的基本的绘图手段。

    工作空间相关

    ls()
    
    ## character(0)
    
    rm(a)
    
    ## Warning in rm(a): 找不到对象'a'
    
    ls()
    
    ## character(0)
    

    基本数据类型

    1. logical
      • TRUE/FALSE/NA/T/F(推荐使用完整形式)/某些时候的0与非0
    2. numeric
      • integer is numeric
      • numeric not always integer
    3. character

    Other atomic types:

    • double: higher precision
    • complex: complex numbers
    • raw: store raw bytes

    is.*()返回括号内内容是否是*对应类型。

    # logical
    TRUE
    
    ## [1] TRUE
    
    class(TRUE)
    
    ## [1] "logical"
    
    FALSE
    
    ## [1] FALSE
    
    class(NA)
    
    ## [1] "logical"
    
    T
    
    ## [1] TRUE
    
    F
    
    ## [1] FALSE
    
    # numeric
    2
    
    ## [1] 2
    
    class(2)
    
    ## [1] "numeric"
    
    2.5
    
    ## [1] 2.5
    
    class(2.5)
    
    ## [1] "numeric"
    
    2L
    
    ## [1] 2
    
    class(2L) 
    
    ## [1] "integer"
    
    is.numeric(2)
    
    ## [1] TRUE
    
    is.numeric(2L)
    
    ## [1] TRUE
    
    #integer is numeric 
    #numeric not always integer
    is.integer(2)
    
    ## [1] FALSE
    
    is.integer(2L)
    
    ## [1] TRUE
    
    # character
     "I love data science!"
    
    ## [1] "I love data science!"
    
     class("I love data science!")
    
    ## [1] "character"
    

    强制转换

    as.*()返回括号内内容转化为*对应类型后的结果,有些情况无法转换。

    as.numeric(TRUE)
    
    ## [1] 1
    
    as.numeric(FALSE)
    
    ## [1] 0
    
    as.character(4)
    
    ## [1] "4"
    
    as.numeric("4.5")
    
    ## [1] 4.5
    
    as.integer("4.5")
    
    ## [1] 4
    
    as.numeric("Hello")
    
    ## Warning: 强制改变过程中产生了NA
    
    ## [1] NA
    

    向量 Vector

    • Sequence of data elements
    • Same basic type
      • Automatic coercion if necessary
    • character, numeric, logical
    • Single value = Vector

    创建 c()或者利用:

    # c()
    drawn_suits <- c("hearts", "spades", "diamonds",  
                       "diamonds", "spades")
    drawn_suits
    
    ## [1] "hearts"   "spades"   "diamonds" "diamonds" "spades"
    
    is.vector(drawn_suits)
    
    ## [1] TRUE
    
    # :
    1:5
    
    ## [1] 1 2 3 4 5
    
    is.vector(1:5)
    
    ## [1] TRUE
    

    命名 names()

    remain <- c(11, 12, 11, 13)
    suits <- c("spades", "hearts", "diamonds", "clubs")
    names(remain) <- suits
    remain 
    
    ##   spades   hearts diamonds    clubs 
    ##       11       12       11       13
    
    #or
    remain <- c(spades = 11, hearts = 12,  
                  diamonds = 11, clubs = 13)
    remain
    
    ##   spades   hearts diamonds    clubs 
    ##       11       12       11       13
    
    #or
    remain <- c("spades" = 11, "hearts" = 12,  
                  "diamonds" = 11, "clubs" = 13)
    remain
    
    ##   spades   hearts diamonds    clubs 
    ##       11       12       11       13
    

    单值仍为向量

    my_apples <- 5 
    my_oranges <- "six" 
    is.vector(my_apples)
    
    ## [1] TRUE
    
    is.vector(my_oranges)
    
    ## [1] TRUE
    
    length(my_apples)
    
    ## [1] 1
    
    length(my_oranges)
    
    ## [1] 1
    

    强制变换

    drawn_ranks <- c(7, 4, "A", 10, "K", 3, 2, "Q")
    drawn_ranks
    
    ## [1] "7"  "4"  "A"  "10" "K"  "3"  "2"  "Q"
    
    class(drawn_ranks)
    
    ## [1] "character"
    

    基本运算

    很自然的可以由单数的运算推广出来。

    # with number: +-*/
    earnings <- c(50, 100, 30)
    earnings * 3
    
    ## [1] 150 300  90
    
    earnings^2
    
    ## [1]  2500 10000   900
    
    # with vector: +-*/
    earnings <- c(50, 100, 30) 
    expenses <- c(30, 40, 80) 
    bank <- earnings - expenses
    ## sum() >
    sum(bank)
    
    ## [1] 30
    
    earnings > expenses
    
    ## [1]  TRUE  TRUE FALSE
    
    ## multiplication and division are done element-wise!
    earnings * c(1, 2, 3)
    
    ## [1]  50 200  90
    

    子集

    三种索引方式

    • 序号(R从1开始)
    • 名字 —— names()的利用
    • 逻辑值
    remain <- c(spades = 11, hearts = 12,  
                  diamonds = 11, clubs = 13)
    remain[1]
    
    ## spades 
    ##     11
    
    remain["spades"]
    
    ## spades 
    ##     11
    
    remain[c(4, 1)] # 此法可以用来交换或者抽取特定位置的元素
    
    ##  clubs spades 
    ##     13     11
    
    remain[c("clubs", "spades")]
    
    ##  clubs spades 
    ##     13     11
    
    # 逻辑值索引,短的会被自动循环使用
    remain[c(TRUE, FALSE)]
    
    ##   spades diamonds 
    ##       11       11
    
    remain[c(TRUE, FALSE, TRUE, FALSE)]
    
    ##   spades diamonds 
    ##       11       11
    
    # 负索引,“all but it”,返回除此之外的元素
    remain[-1]
    
    ##   hearts diamonds    clubs 
    ##       12       11       13
    
    remain[-c(1, 2)]
    
    ## diamonds    clubs 
    ##       11       13
    
    #remain[-"spades"] #can't work
    

    矩阵 Matrix

    • Vector: 1D array of data elements
    • Matrix: 2D array of data elements
    • Rows and columns
    • One atomic vector type

    创建 matrix()

    默认按列填充

    # 直接创建
    matrix(1:6, nrow = 2)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    3    5
    ## [2,]    2    4    6
    
    matrix(1:6, ncol = 3)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    3    5
    ## [2,]    2    4    6
    
    matrix(1:6, nrow = 2, byrow = TRUE)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    2    3
    ## [2,]    4    5    6
    
    # 循环创建
    matrix(1:3, nrow = 2, ncol = 3)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    3    2
    ## [2,]    2    1    3
    
    matrix(1:4, nrow = 2, ncol = 3)
    
    ## Warning in matrix(1:4, nrow = 2, ncol = 3): 数据长度[4]不是矩阵列数[3]的整
    ## 倍数
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    3    1
    ## [2,]    2    4    2
    
    # 组合创建
    cbind(1:3, 1:3)
    
    ##      [,1] [,2]
    ## [1,]    1    1
    ## [2,]    2    2
    ## [3,]    3    3
    
    rbind(1:3, 1:3)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    2    3
    ## [2,]    1    2    3
    
    m <- matrix(1:6, byrow = TRUE, nrow = 2)
    rbind(m, 7:9)
    
    ##      [,1] [,2] [,3]
    ## [1,]    1    2    3
    ## [2,]    4    5    6
    ## [3,]    7    8    9
    
    cbind(m, c(10, 11))
    
    ##      [,1] [,2] [,3] [,4]
    ## [1,]    1    2    3   10
    ## [2,]    4    5    6   11
    

    命名

    rownames(), colnames()

    m <- matrix(1:6, byrow = TRUE, nrow = 2)
    rownames(m) <- c("row1", "row2")
    m
    
    ##      [,1] [,2] [,3]
    ## row1    1    2    3
    ## row2    4    5    6
    
    colnames(m) <- c("col1", "col2", "col3")
    m
    
    ##      col1 col2 col3
    ## row1    1    2    3
    ## row2    4    5    6
    
    # 直接命名
    m <- matrix(1:6, byrow = TRUE, nrow = 2,  
                  dimnames = list(c("row1", "row2"),  
                                  c("col1", "col2", "col3"))) 
    m
    
    ##      col1 col2 col3
    ## row1    1    2    3
    ## row2    4    5    6
    

    强制转换

    num <- matrix(1:8, ncol = 2)
    num
    
    ##      [,1] [,2]
    ## [1,]    1    5
    ## [2,]    2    6
    ## [3,]    3    7
    ## [4,]    4    8
    
    char <- matrix(LETTERS[1:6], nrow = 4, ncol = 3)
    char
    
    ##      [,1] [,2] [,3]
    ## [1,] "A"  "E"  "C" 
    ## [2,] "B"  "F"  "D" 
    ## [3,] "C"  "A"  "E" 
    ## [4,] "D"  "B"  "F"
    
    num <- matrix(1:8, ncol = 2)
    char <- matrix(LETTERS[1:6], nrow = 4, ncol = 3)
    cbind(num, char)
    
    ##      [,1] [,2] [,3] [,4] [,5]
    ## [1,] "1"  "5"  "A"  "E"  "C" 
    ## [2,] "2"  "6"  "B"  "F"  "D" 
    ## [3,] "3"  "7"  "C"  "A"  "E" 
    ## [4,] "4"  "8"  "D"  "B"  "F"
    

    子集运算

    m <- matrix(sample(1:15, 12), nrow = 3)
    rownames(m) <- c("r1", "r2", "r3") 
    colnames(m) <- c("a", "b", "c", "d")
    m
    
    ##     a  b  c  d
    ## r1  7  5  6 10
    ## r2  3  9 12  8
    ## r3 15 13  2  4
    
    m[1,3]
    
    ## [1] 6
    
    m[3,] 
    
    ##  a  b  c  d 
    ## 15 13  2  4
    
    m[,3]
    
    ## r1 r2 r3 
    ##  6 12  2
    
    m[4] # 默认按列计数 
    
    ## [1] 5
    
    m[2, c(2, 3)]
    
    ##  b  c 
    ##  9 12
    
    m[c(1, 2), c(2, 3)]
    
    ##    b  c
    ## r1 5  6
    ## r2 9 12
    
    m[c(1, 3), c(1, 3, 4)]
    
    ##     a c  d
    ## r1  7 6 10
    ## r3 15 2  4
    
    m["r2","c"]
    
    ## [1] 12
    
    m[2,"c"]
    
    ## [1] 12
    
    m[3, c("c", "d")]
    
    ## c d 
    ## 2 4
    
    m[c(FALSE, FALSE, TRUE),  
        c(FALSE, TRUE, FALSE, TRUE)] 
    
    ##  b  d 
    ## 13  4
    
    m[c(FALSE, FALSE, TRUE),  
        c(FALSE, TRUE)]
    
    ##  b  d 
    ## 13  4
    

    矩阵运算

    • colSums(), rowSums()
    • Standard arithmetic possible
    • Element-wise computation
    the_fellowship <- c(316, 556) 
    two_towers <- c(343, 584) 
    return_king <- c(378, 742) 
    lotr_matrix <- rbind(the_fellowship, two_towers, return_king) 
    colnames(lotr_matrix) <- c("US", "non-US") 
    rownames(lotr_matrix) <- c("Fellowship", "Two Towers",  
                                 "Return King") 
    lotr_matrix
    
    ##              US non-US
    ## Fellowship  316    556
    ## Two Towers  343    584
    ## Return King 378    742
    
    # 与数字 +-*/
    lotr_matrix / 1.12 
    
    ##                   US   non-US
    ## Fellowship  282.1429 496.4286
    ## Two Towers  306.2500 521.4286
    ## Return King 337.5000 662.5000
    
    lotr_matrix - 50
    
    ##              US non-US
    ## Fellowship  266    506
    ## Two Towers  293    534
    ## Return King 328    692
    
    # 与矩阵 +-*/ (这里不是线性代数中的矩阵计算)
    theater_cut <- matrix(c(50, 80, 100), nrow = 3, ncol = 2)
    theater_cut
    
    ##      [,1] [,2]
    ## [1,]   50   50
    ## [2,]   80   80
    ## [3,]  100  100
    
    lotr_matrix - theater_cut
    
    ##              US non-US
    ## Fellowship  266    506
    ## Two Towers  263    504
    ## Return King 278    642
    
    # 与向量
    lotr_matrix - c(50, 80, 100) #按列循环计算
    
    ##              US non-US
    ## Fellowship  266    506
    ## Two Towers  263    504
    ## Return King 278    642
    

    因子 Factors

    • Factors for categorical variables
    • Limited number of different values
    • Belong to category

    创建因子 factor()

    blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
    blood
    
    ## [1] "B"  "AB" "O"  "A"  "O"  "O"  "A"  "B"
    
    blood_factor <- factor(blood) # 默认等级按照字母顺序定
    blood_factor
    
    ## [1] B  AB O  A  O  O  A  B 
    ## Levels: A AB B O
    
    str(blood_factor)
    
    ##  Factor w/ 4 levels "A","AB","B","O": 3 2 4 1 4 4 1 3
    
    # 自定义level
    blood_factor2 <- factor(blood, 
                              levels = c("O", "A", "B", "AB"))
    blood_factor2
    
    ## [1] B  AB O  A  O  O  A  B 
    ## Levels: O A B AB
    
    str(blood_factor2)
    
    ##  Factor w/ 4 levels "O","A","B","AB": 3 4 1 2 1 1 2 3
    

    Rename factor levels

    blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
    #1.1
    blood_factor <- factor(blood)
    levels(blood_factor) <- c("BT_A", "BT_AB", "BT_B", "BT_O")
    #1.2
    blood <- c("B", "AB", "O", "A", "O", "O", "A", "B") 
    blood_factor <- factor(blood) 
    factor(blood,  
             levels = c("O", "A", "B", "AB"),  
             labels = c("BT_O", "BT_A", "BT_B", "BT_AB"))
    
    ## [1] BT_B  BT_AB BT_O  BT_A  BT_O  BT_O  BT_A  BT_B 
    ## Levels: BT_O BT_A BT_B BT_AB
    
    #2
    factor(blood, labels = c("BT_A", "BT_AB", "BT_B", "BT_O"))
    
    ## [1] BT_B  BT_AB BT_O  BT_A  BT_O  BT_O  BT_A  BT_B 
    ## Levels: BT_A BT_AB BT_B BT_O
    

    Ordered factor

    blood <- c("B", "AB", "O", "A", "O", "O", "A", "B")
    blood_factor <- factor(blood) 
    blood_factor[1] < blood_factor[2] 
    
    ## Warning in Ops.factor(blood_factor[1], blood_factor[2]): '<' not meaningful
    ## for factors
    
    ## [1] NA
    
    # 下面比较大小才是有意义的
    tshirt <- c("M", "L", "S", "S", "L", "M", "L", "M")
    tshirt_factor <- factor(tshirt, ordered = TRUE, 
                              levels = c("S", "M", "L"))
    tshirt_factor
    
    ## [1] M L S S L M L M
    ## Levels: S < M < L
    
    tshirt_factor[1] < tshirt_factor[2]
    
    ## [1] TRUE
    

    列表 List

    Vector - Matrix - List

    • Vector: 1D, same type
    • Matrix: 2D, same type
    • List:
      • Different R objects
      • No coercion
      • Loss of some functionality

    创建列表 list()

    list("Rsome times", 190, 5)
    
    ## [[1]]
    ## [1] "Rsome times"
    ## 
    ## [[2]]
    ## [1] 190
    ## 
    ## [[3]]
    ## [1] 5
    
    song <- list("Rsome times", 190, 5)
    is.list(song)
    
    ## [1] TRUE
    

    命名列表

    #1
    song <- list("Rsome times", 190, 5) 
    names(song) <- c("title", "duration", "track")
    song
    
    ## $title
    ## [1] "Rsome times"
    ## 
    ## $duration
    ## [1] 190
    ## 
    ## $track
    ## [1] 5
    
    #2
    song <- list(title = "Rsome times",  
                   duration = 190,  
                   track = 5)
    song
    
    ## $title
    ## [1] "Rsome times"
    ## 
    ## $duration
    ## [1] 190
    ## 
    ## $track
    ## [1] 5
    
    str(song)
    
    ## List of 3
    ##  $ title   : chr "Rsome times"
    ##  $ duration: num 190
    ##  $ track   : num 5
    

    列表嵌套

    similar_song <- list(title = "R you on time?", 
                           duration = 230)
    song <- list(title = "Rsome times", 
                   duration = 190, track = 5,  
                   similar = similar_song)
    str(song)
    
    ## List of 4
    ##  $ title   : chr "Rsome times"
    ##  $ duration: num 190
    ##  $ track   : num 5
    ##  $ similar :List of 2
    ##   ..$ title   : chr "R you on time?"
    ##   ..$ duration: num 230
    

    子集运算

    [ versus [[

    similar_song <- list(title = "R you on time?", 
                           duration = 230) 
    song <- list(title = "Rsome times", 
                   duration = 190, track = 5, 
                   similar = similar_song) 
    str(song)
    
    ## List of 4
    ##  $ title   : chr "Rsome times"
    ##  $ duration: num 190
    ##  $ track   : num 5
    ##  $ similar :List of 2
    ##   ..$ title   : chr "R you on time?"
    ##   ..$ duration: num 230
    
    song[1]
    
    ## $title
    ## [1] "Rsome times"
    
    song[[1]]
    
    ## [1] "Rsome times"
    
    song[c(1, 3)] 
    
    ## $title
    ## [1] "Rsome times"
    ## 
    ## $track
    ## [1] 5
    
    #song[[c(1, 3)]] #can't work
    #song[[1]][[3]] #can't work
    song[["duration"]]
    
    ## [1] 190
    
    song["duration"]
    
    ## $duration
    ## [1] 190
    
    song[c(FALSE, TRUE, TRUE, FALSE)]
    
    ## $duration
    ## [1] 190
    ## 
    ## $track
    ## [1] 5
    
    #song[[c(FALSE, TRUE, TRUE, FALSE)]] # can't work
    #song[[F]][[T]][[T]][[F]] #also
    
    # list in list
    song[[4]][[1]]
    
    ## [1] "R you on time?"
    
    song[[c(4, 1)]]
    
    ## [1] "R you on time?"
    
    song[c("duration", "similar")] 
    
    ## $duration
    ## [1] 190
    ## 
    ## $similar
    ## $similar$title
    ## [1] "R you on time?"
    ## 
    ## $similar$duration
    ## [1] 230
    

    [[ or [ ? + [[ to select list element + [ results in
    sublist + [[ and $ to subset and extend lists

    列表扩展

    这里引出了R中比较重要的一个符号$

    similar_song <- list(title = "R you on time?", 
                           duration = 230) 
    song <- list(title = "Rsome times", 
                   duration = 190, track = 5, 
                   similar = similar_song) 
    #$
    song$duration
    
    ## [1] 190
    
    #extending
    friends <- c("Kurt", "Florence",
                    "Patti", "Dave")
    song$sent <- friends #或者 song[["sent"]] <- friends
    song$similar$reason <- "too long"
    song
    
    ## $title
    ## [1] "Rsome times"
    ## 
    ## $duration
    ## [1] 190
    ## 
    ## $track
    ## [1] 5
    ## 
    ## $similar
    ## $similar$title
    ## [1] "R you on time?"
    ## 
    ## $similar$duration
    ## [1] 230
    ## 
    ## $similar$reason
    ## [1] "too long"
    ## 
    ## 
    ## $sent
    ## [1] "Kurt"     "Florence" "Patti"    "Dave"
    

    数据框 Data Frame

    • Observations 观测值
    • Variables 变量
    • Example: people
      • each person = observation
      • properties (name, age …) = variables
    • Rows = observations (persons)
    • Columns = variables (age, name, …)

    不同的变量的观测值可以类型不同,但是变量自己的所有观测值类型一致。

    多在导入数据时使用。

    创建数据框

    name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
    age <- c(28, 30, 21, 39, 35) 
    child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
    df <- data.frame(name, age, child) 
    str(df)
    
    ## 'data.frame':    5 obs. of  3 variables:
    ##  $ name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
    ##  $ age  : num  28 30 21 39 35
    ##  $ child: logi  FALSE TRUE TRUE FALSE TRUE
    

    命名数据框

    name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
    age <- c(28, 30, 21, 39, 35) 
    child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
    df <- data.frame(name, age, child)
    names(df) <- c("Name", "Age", "Child") 
    str(df)
    
    ## 'data.frame':    5 obs. of  3 variables:
    ##  $ Name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
    ##  $ Age  : num  28 30 21 39 35
    ##  $ Child: logi  FALSE TRUE TRUE FALSE TRUE
    
    df <- data.frame(Name = name, Age = age, Child = child) #also
    str(df)
    
    ## 'data.frame':    5 obs. of  3 variables:
    ##  $ Name : Factor w/ 5 levels "Anne","Cath",..: 1 5 3 4 2
    ##  $ Age  : num  28 30 21 39 35
    ##  $ Child: logi  FALSE TRUE TRUE FALSE TRUE
    

    可见,这里的字符串向量,被自动转化为因子类型,所以可以设置参数来避免此隐含行为。

    name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
    age <- c(28, 30, 21, 39, 35) 
    child <- c(FALSE, TRUE, TRUE, FALSE, TRUE)
    df <- data.frame(name, age, child, 
                       stringsAsFactors = FALSE)
    str(df)
    
    ## 'data.frame':    5 obs. of  3 variables:
    ##  $ name : chr  "Anne" "Pete" "Frank" "Julia" ...
    ##  $ age  : num  28 30 21 39 35
    ##  $ child: logi  FALSE TRUE TRUE FALSE TRUE
    

    子集运算

    Subset Data Frame * Subsetting syntax from matrices and lists * [
    from matrices * [[ and $ from lists

    name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
    age <- c(28, 30, 21, 39, 35) 
    child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
    people <- data.frame(name, age, child,  
                   stringsAsFactors = FALSE)
    
    # 类似矩阵的操作
    people[3,2] 
    
    ## [1] 21
    
    people[3,"age"]
    
    ## [1] 21
    
    people[,"age"]
    
    ## [1] 28 30 21 39 35
    
    people[3,] # 由于返回的是一个数据框,我的R notebook不显示数据框
    
    ##    name age child
    ## 3 Frank  21  TRUE
    
    people[c(3, 5), c("age", "child")] # 同上
    
    ##   age child
    ## 3  21  TRUE
    ## 5  35  TRUE
    
    # 类似列表的操作
    people$age
    
    ## [1] 28 30 21 39 35
    
    people[["age"]]
    
    ## [1] 28 30 21 39 35
    
    people[[2]]
    
    ## [1] 28 30 21 39 35
    
    ## 由于返回的是一个数据框,我的R notebook不显示数据框
    people["age"]
    
    ##   age
    ## 1  28
    ## 2  30
    ## 3  21
    ## 4  39
    ## 5  35
    
    people[2]
    
    ##   age
    ## 1  28
    ## 2  30
    ## 3  21
    ## 4  39
    ## 5  35
    

    扩展数据框

    Extend Data Frame * Add columns = add variables * Add rows = add
    observations

    name <- c("Anne", "Pete", "Frank", "Julia", "Cath") 
    age <- c(28, 30, 21, 39, 35) 
    child <- c(FALSE, TRUE, TRUE, FALSE, TRUE) 
    people <- data.frame(name, age, child,  
                   stringsAsFactors = FALSE)
    #Add column
    height <- c(163, 177, 163, 162, 157) 
    people$height <- height 
    str(people)
    
    ## 'data.frame':    5 obs. of  4 variables:
    ##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
    ##  $ age   : num  28 30 21 39 35
    ##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
    ##  $ height: num  163 177 163 162 157
    
    ##also
    people[["height"]] <- height
    str(people)
    
    ## 'data.frame':    5 obs. of  4 variables:
    ##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
    ##  $ age   : num  28 30 21 39 35
    ##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
    ##  $ height: num  163 177 163 162 157
    
    weight <- c(74, 63, 68, 55, 56) 
    cbind(people, weight)
    
    ##    name age child height weight
    ## 1  Anne  28 FALSE    163     74
    ## 2  Pete  30  TRUE    177     63
    ## 3 Frank  21  TRUE    163     68
    ## 4 Julia  39 FALSE    162     55
    ## 5  Cath  35  TRUE    157     56
    
    #Add row 这里要注意,有时候会出错
    tom <- data.frame("Tom", 37, FALSE, 183)
    #rbind(people, tom)
    #会报错:
    #Error : names do not match previous names
    tom <- data.frame(name = "Tom", age = 37, 
                child = FALSE, height = 183)
    rbind(people, tom) 
    
    ##    name age child height
    ## 1  Anne  28 FALSE    163
    ## 2  Pete  30  TRUE    177
    ## 3 Frank  21  TRUE    163
    ## 4 Julia  39 FALSE    162
    ## 5  Cath  35  TRUE    157
    ## 6   Tom  37 FALSE    183
    

    排序

    这里主要介绍了sort()order(),其中,order()更适合用来为数据框调整顺序。

    str(people)
    
    ## 'data.frame':    5 obs. of  4 variables:
    ##  $ name  : chr  "Anne" "Pete" "Frank" "Julia" ...
    ##  $ age   : num  28 30 21 39 35
    ##  $ child : logi  FALSE TRUE TRUE FALSE TRUE
    ##  $ height: num  163 177 163 162 157
    
    #sort()直接对于向量元素进行了排序
    sort(people$age)
    
    ## [1] 21 28 30 35 39
    
    #order()会返回对应大小等级所实际在的位置
    ranks <- order(people$age) 
    ranks
    
    ## [1] 3 1 2 5 4
    
    people$age
    
    ## [1] 28 30 21 39 35
    
    people[ranks, ] #直接对行进行了排序
    
    ##    name age child height
    ## 3 Frank  21  TRUE    163
    ## 1  Anne  28 FALSE    163
    ## 2  Pete  30  TRUE    177
    ## 5  Cath  35  TRUE    157
    ## 4 Julia  39 FALSE    162
    
    #或者如下可以实现降序排序
    people[order(people$age, decreasing = TRUE), ] 
    
    ##    name age child height
    ## 4 Julia  39 FALSE    162
    ## 5  Cath  35  TRUE    157
    ## 2  Pete  30  TRUE    177
    ## 1  Anne  28 FALSE    163
    ## 3 Frank  21  TRUE    163
    

    绘图 Graphics

    这里主要介绍了graphics包的plot()hist()

    plot()会根据不同的数据类型,而画出不同的图像

    1. plot() (categorical) 条形图 例如:plot(countries$continent)
    2. plot() (numerical) 散点图 例如:plot(countries$population)
    3. plot() (2x numerical) 散点图
      例如:plot(countries$area, countries$population)
      plot(log(countries$area), log(countries$population))
    4. plot() (2x categorical) 某种条形图的变形
      例如:plot(countries$continent, countries$religion)

    hist()可以绘制直方图 例如: hist(africa$population)
    hist(africa$population, breaks = 10)

    Other graphics functions * barplot() * boxplot() * pairs()

    自定义绘图

    这里就是修改参数了。无需多讲。

    这里,引出了函数par(),这是一个绘图的公共参数列表,里面存放着常用的一些绘图的公共属性,可以实现绘制多幅图形时,基本属性的一次性确定。

    例如:

    par(col = "blue") 
    plot(mercury$temperature, mercury$pressure) 
    

    常用的plot的属性有:

    plot(mercury$temperature, mercury$pressure, 
           xlab = "Temperature", 
           ylab = "Pressure", 
           main = "T vs P for Mercury", #标题
           type = "o", 
           col = "orange", 
           col.main = "darkgray", 
           cex.axis = 0.6, #cex系列属性表示缩放程度
           lty = 5, #Line Type
           pch = 4  #Plot Symbol
           )
    

    多图绘制

    mfrowmfcol参数可以在一个图形框里,用来放置多个图像,区别是,前者是将后面plot语句生成的图像按行填充,而后者是按列填充。

    #按行填充
    par(mfrow = c(2,2)) 
    plot(shop$ads, shop$sales) 
    plot(shop$comp, shop$sales) 
    plot(shop$inv, shop$sales) 
    plot(shop$size_dist, shop$sales)
    
    #按列填充
    par(mfcol = c(2,2)) 
    plot(shop$ads, shop$sales) 
    plot(shop$comp, shop$sales) 
    plot(shop$inv, shop$sales) 
    plot(shop$size_dist, shop$sales)
    

    Reset the grid

    par(mfrow = c(1,1))
    

    相较于这个,layout()函数设置的更为灵活。

    grid <- matrix(c(1, 1, 2, 3), nrow = 2, 
             ncol = 2, byrow = TRUE) 
    layout(grid)
    plot(shop$ads, shop$sales) #放在grid的1号位置
    plot(shop$comp, shop$sales) #放在grid的2号位置
    plot(shop$inv, shop$sales) #放在grid的3号位置
    

    Reset the grid

    layout(1) 
    par(mfcol = c(1,1))
    

    Reset all parameters

    old_par <- par() 
    par(col = "red") 
    plot(shop$ads, shop$sales) 
    par(old_par) 
    plot(shop$ads, shop$sales)
    

    线性拟合

    引出函数lm() —— linear
    model
    ,**lm(a~b)就是对a=k*b+c进行线性拟合**

    plot(shop$ads, shop$sales, 
          pch = 16, col = 2, 
          xlab = "advertisement", 
          ylab = "net sales")
    lm_sales <- lm(shop$sales ~ shop$ads)
    abline(coef(lm_sales), lwd = 2) #取模型系数,线宽为2,画直线
  • 相关阅读:
    iOS socket编程 第三方库 AsyncSocket(GCDAsyncSocket)
    JS中reduce方法
    程序员的运动建议
    Vuex(三)—— getters,mapGetters,...mapGetters详解
    微信小程序之使用函数防抖与函数节流
    JS 异步(callback→Promise→async/await)
    圈子与网络
    社会经验4
    社会经验3
    爱情(。_。)大忌
  • 原文地址:https://www.cnblogs.com/lart/p/8413795.html
Copyright © 2011-2022 走看看