zoukankan      html  css  js  c++  java
  • [leetcode] Burst Balloons

    题目:

    Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent.
    
    Find the maximum coins you can collect by bursting the balloons wisely.
    
    Note: 
    (1) You may imagine nums[-1] = nums[n] = 1. They are not real therefore you can not burst them.
    (2) 0 ≤ n ≤ 500, 0 ≤ nums[i] ≤ 100
    
    Example:
    
    Given [3, 1, 5, 8]
    
    Return 167
    
        nums = [3,1,5,8] --> [3,5,8] -->   [3,8]   -->  [8]  --> []
       coins =  3*1*5      +  3*5*8    +  1*3*8      + 1*8*1   = 167

    分析:这是一个DP问题,关键是要如何转化为最优子结构问题求解,我们以最后被爆破的气球为界限,把数组分为左右两个子区域,然后分别在每个子区域中递归求解,可以用一个数组dp[i][j]记忆从下标i到下标j之间的最大coins,防止重复计算。

    Java代码:

        public int maxCoins(int[] nums) {
            if(nums == null) return 0;
            int[] array = new int[nums.length+2];
            int i = 1;
            for(int num:nums) {
                if(num != 0)
                    array[i++] = num;
            }
            array[0] = 1; array[i] = 1;
            int[][] dp = new int[nums.length+2][nums.length+2];
            return helper(array, dp, 0, i);
        }
        
        public int helper(int[] array, int[][] dp, int i, int j) {
            if(i+1 >= j) return 0;
            if(dp[i][j] > 0) return dp[i][j];
            int res = 0;
            for(int k = i+1; k < j; k++) {
                res = Math.max(res, array[i]*array[k]*array[j] + helper(array, dp, i, k) + helper(array, dp, k, j));
            }
            dp[i][j] = res;
            return res;
        }
  • 相关阅读:
    java-线程
    List、Map、set的加载因子,默认初始容量和扩容增量
    Mybatis使用generator自动生成映射配置文件信息
    Fiddler手机https抓包
    通知消息与ON_NOTIFY
    ATL实现COM组件
    vs参数配置
    QToolBox
    CTreeCtrl控件
    SQL-INSERT INTO用法
  • 原文地址:https://www.cnblogs.com/lasclocker/p/5009298.html
Copyright © 2011-2022 走看看