动态规划。就是要注意第0行和第0列的初始化。
public class Solution {
public int minPathSum(int[][] grid) {
// Start typing your Java solution below
// DO NOT write main() function
int m = grid.length;
if (m == 0) return 0;
int n = grid[0].length;
if (n == 0) return 0;
int[][] mx = new int[m][n];
mx[0][0] = grid[0][0];
for (int i = 1; i < m; i++) {
mx[i][0] = mx[i-1][0] + grid[i][0];
}
for (int j = 1; j < n; j++) {
mx[0][j] = mx[0][j-1] + grid[0][j];
}
for (int i = 1; i < m; i++) {
for (int j = 1; j < n; j++) {
mx[i][j] = Math.min(mx[i-1][j], mx[i][j-1]) + grid[i][j];
}
}
return mx[m-1][n-1];
}
}
Python3
class Solution:
def minPathSum(self, grid: List[List[int]]) -> int:
if len(grid) == 0 or len(grid[0]) == 0:
return 0
m = len(grid)
n = len(grid[0])
memo = {}
for i in range(m):
for j in range(n):
if i == 0 and j == 0:
memo[(i, j)] = grid[i][j]
elif i == 0:
memo[(i, j)] = grid[i][j] + memo[(i, j - 1)]
elif j == 0:
memo[(i, j)] = grid[i][j] + memo[(i - 1, j)]
else: # i != 0 or j != 0
memo[(i, j)] = grid[i][j] + min(memo[(i - 1, j)], memo[(i, j - 1)])
return memo[(m - 1, n - 1)]