zoukankan      html  css  js  c++  java
  • Yet Another Number Sequence

    题意:

    $F_0 = 0, F_1 = 1, F_n = F_{n-1} + F_{n-2}$

    求解$sum_{i=1}^n{ F_i i^K }  mod  10^9+7$。

    解法:

    记$S(n,m) = sum_{i=1}^n { F_i i^m}$

    这样有:

    $$S(2n,m)  = sum_{i=1}^n{F_i i^m} + sum_{i=1}^n{F_{i+n} (i+n)^m}$$

    记$G = lgroup egin{matrix} 1 & 1 \ 1 & 0 end{matrix} group$

    有$F_n = G_{1,1}$

    将$S(n,m)$的含义换为对应求和的矩阵。

    1.考虑从$S(n,m)$推到$S(2n,m)$

    $$S(2n,m) = sum_{i=1}^n{G^n i^m} + G^n sum_{i=1}^n{G^{i} (i+n)^m}$$

    $$S(2n,m) = sum_{i=1}^n{G^n i^m} + G^n sum_{i=1}^n{G^{i} sum_{r=0}^m{i^rm^{m-r}C_m^r}}$$

    $$S(2n,m) = sum_{i=1}^n{G^n i^m} + G^n sum_{r=0}^m{m^{m-r}C_m^r S(n,r)}$$

    这样$O(K)$完成单次转移。 

    2.考虑从$S(n,m)$推到$S(n+1,m)$

    $$S(n+1,m) = S(n,m) + (n+1)^m G^{n+1}$$

    这样分治下去,总效率$O(K^2 logn)$

    (注意本题中n过大,要先对于n取模再进行乘法)

      1 #include <iostream>
      2 #include <cstdio>
      3 #include <cstring>
      4 
      5 #define LL long long
      6 #define P 1000000007LL
      7 
      8 using namespace std;
      9     
     10 struct MA
     11 {
     12     LL a[2][2];
     13     
     14     void init()
     15     {
     16         memset(a,0,sizeof(a));
     17     }
     18     
     19     MA operator*(const MA &x)const
     20     {
     21         MA c;
     22         for(int i=0,j,k;i<2;i++)
     23             for(j=0;j<2;j++)
     24             {
     25                 c.a[i][j]=0;
     26                 for(k=0;k<2;k++)
     27                 {
     28                     c.a[i][j]+=a[i][k]*x.a[k][j]%P;
     29                     if(c.a[i][j]>=P) c.a[i][j]-=P;
     30                 }
     31             }
     32         return c;
     33     }
     34     
     35     MA operator*(const LL &x)const
     36     {
     37         MA c;
     38         for(int i=0,j;i<2;i++)
     39             for(j=0;j<2;j++)
     40                 c.a[i][j] = a[i][j]*x%P;
     41         return c;
     42     }
     43     
     44     MA operator+(const MA &x)const
     45     {
     46         MA c;
     47         for(int i=0,j;i<2;i++)
     48             for(j=0;j<2;j++)
     49                 c.a[i][j] = (a[i][j]+x.a[i][j])%P;
     50         return c;
     51     }
     52     
     53     void print()
     54     {
     55         puts("Matrix");
     56         for(int i=0,j;i<2;i++)
     57         {
     58             for(j=0;j<2;j++) cout<<a[i][j]<<' ';
     59             cout<<endl;
     60         }
     61     }
     62 };
     63 
     64 MA G,Gn;
     65 MA S[2][50];
     66 LL n,power[50],C[50][50];
     67 int K,now;
     68 
     69 void solve(LL n)
     70 {
     71     if(n==1)
     72     {
     73         now=0;
     74         Gn = G;
     75         for(int i=0;i<=K;i++) S[now][i] = G;
     76         return;
     77     }
     78     solve(n>>1);
     79     now^=1;
     80     MA tmp;
     81     power[0]=1;
     82     for(int k=1;k<=K;k++) power[k] = power[k-1]*((n>>1LL)%P)%P;
     83     for(int k=0;k<=K;k++)
     84     {
     85         tmp.init();
     86         for(int r=0;r<=k;r++)
     87             tmp = tmp + ( S[now^1][r] * (C[k][r]*power[k-r]%P) );
     88         S[now][k] = S[now^1][k] + (Gn * tmp);
     89     }
     90     Gn = Gn*Gn;
     91     if(n&1)
     92     {
     93         Gn = Gn*G;
     94         power[0]=1LL;
     95         for(int k=0;k<=K;k++)
     96         {
     97             S[now][k] = S[now][k] + (Gn * power[k]);
     98             power[k+1] = power[k]*(n%P)%P;
     99         }
    100     }
    101 }
    102 
    103 int main()
    104 {
    105     G.a[0][0]=1; G.a[0][1]=1;
    106     G.a[1][0]=1; G.a[1][1]=0;
    107     while(~scanf("%I64d%d",&n,&K))
    108     {
    109         C[0][0]=1;
    110         for(int i=1;i<=K;i++)
    111         {
    112             C[i][0]=1;
    113             for(int j=1;j<=i;j++)
    114             {
    115                 C[i][j] = C[i-1][j-1]+C[i-1][j];
    116                 if(C[i][j]>=P) C[i][j] -= P;
    117             }
    118         }
    119         solve(n);
    120         cout << S[now][K].a[0][0] << endl;
    121     }
    122     return 0;
    123 }
    View Code
  • 相关阅读:
    性能测试目的和性能测试主要术语
    回数
    python求100以内的素数
    杨辉三角
    裴波那契数列
    day12_框架二sendmail.py代码
    codeforces 1435 E
    codeforces C
    codeforces 1436E
    codeforces 1435 D. Shurikens (贪心)
  • 原文地址:https://www.cnblogs.com/lawyer/p/6605980.html
Copyright © 2011-2022 走看看