题目
在四面体 (ABCD) 中,(AB=BD=DC=CA=2) ,则此四面体体积的最大值是((qquad))
解析
作 (BC) 中点 (M) ,连接 (AM,MD),设 (BC=x,AD=y,AM=MD=m,angle AMD= heta) .
因为 (AB=CA) ,所以 (AMperp BC) ,同理 (DMperp BC) ,所以 (BCperp) 面(AMD) ,故
[V_{A-BCD}=dfrac{1}{3}S_{ riangle AMD}cdot BC
]
而
[egin{array}{rl}S_{ riangle AMD}&=dfrac{1}{2}cdot AMcdot DMcdot sin heta \[1ex] &=dfrac12m^2sqrt{1-cos^2 heta} \[1ex] &=dfrac{1}{2}m^2sqrt{1-left(dfrac{2m^2-y^2}{2m^2}
ight)^2} \[1ex] &=dfrac14ysqrt{4m^2-y^2} \[1ex] &=dfrac14ysqrt{16-x^2-y^2}end{array}
]
所以
[egin{array}{rl} V_{A-BCD}&=dfrac{1}{12}xysqrt{16-x^2-y^2} \[1ex] &=dfrac{1}{12}sqrt{x^2y^2(16-x^2-y^2)} \[1ex] &leqdfrac{1}{12}sqrt{left[dfrac{x^2+y^2+(16-x^2-y^2)}{3}
ight]^3} \[1ex] &=dfrac{16sqrt3}{27}end{array}
]
当且仅当 (x^2=y^2=16-x^2-y^2) ,即 (x=y=dfrac{4sqrt3}{3}) 时,等号成立(此处运用了均值不等式的三维形式) .
注:( riangle AMD) 的面积也可利用海伦公式求解,即
[egin{array}{rl} S_{ riangle AMD}&=sqrt{dfrac{m+m+y}{2}(dfrac{m+m+y}{2}-y)(dfrac{m+m+y}{2}-m)(dfrac{m+m+y}{2}-m)} \[1ex] &=sqrt{dfrac{2m+y}{2}cdotdfrac{2m-y}{2}cdotdfrac{y}{2}cdotdfrac{y}{2}} \[1ex] &=dfrac14ysqrt{4m^2-y^2} \[1ex] &=dfrac14ysqrt{16-x^2-y^2}end{array}
]