zoukankan      html  css  js  c++  java
  • poj3176--Cow Bowling(dp:数塔问题)

    Cow Bowling
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14028   Accepted: 9302

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 

              7
    
             *
    
            3   8
    
           *
    
          8   1   0
    
           *
    
        2   7   4   4
    
           *
    
      4   5   2   6   5
     
     
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int dp[400][400] ;
    int main()
    {
        int n , i , j , max1 ;
        while(scanf("%d", &n) !=EOF)
        {
            max1 = 0 ;
            memset(dp,0,sizeof(dp));
            for(i = 1 ; i <= n ; i++)
                for(j = 1 ; j <= i ; j++)
                    scanf("%d", &dp[i][j]);
            for(i = 1 ; i <= n ; i++)
                for(j = 1 ; j <= i ; j++)
                    dp[i][j] = max( dp[i-1][j-1],dp[i-1][j] ) + dp[i][j] ;
            for(i = 1 ; i <= n ; i++)
                max1 = max(max1,dp[n][i]);
            printf("%d
    ", max1);
        }
        return 0;
    }
    

     
  • 相关阅读:
    在Unix上使用管道压缩exp导出文件
    自制CPU的黑暗历程一
    Error C1189: #error: Please use the /MD switch for _AFXDLL builds
    Redis乐观锁解决高并发抢红包的问题
    PHP分页类
    汇编基础——使用nasm和bochs学习汇编
    数据同步工具DBsync
    完成端口的一些教程
    sdf
    (转)C#(WIN FORM)两个窗体间LISTVIEW值的修改
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/5073157.html
Copyright © 2011-2022 走看看