zoukankan      html  css  js  c++  java
  • poj3176--Cow Bowling(dp:数塔问题)

    Cow Bowling
    Time Limit: 1000MS   Memory Limit: 65536K
    Total Submissions: 14028   Accepted: 9302

    Description

    The cows don't use actual bowling balls when they go bowling. They each take a number (in the range 0..99), though, and line up in a standard bowling-pin-like triangle like this: 

              7
    
    
    
            3   8
    
    
    
          8   1   0
    
    
    
        2   7   4   4
    
    
    
      4   5   2   6   5
    Then the other cows traverse the triangle starting from its tip and moving "down" to one of the two diagonally adjacent cows until the "bottom" row is reached. The cow's score is the sum of the numbers of the cows visited along the way. The cow with the highest score wins that frame. 

    Given a triangle with N (1 <= N <= 350) rows, determine the highest possible sum achievable.

    Input

    Line 1: A single integer, N 

    Lines 2..N+1: Line i+1 contains i space-separated integers that represent row i of the triangle.

    Output

    Line 1: The largest sum achievable using the traversal rules

    Sample Input

    5
    7
    3 8
    8 1 0
    2 7 4 4
    4 5 2 6 5

    Sample Output

    30

    Hint

    Explanation of the sample: 

              7
    
             *
    
            3   8
    
           *
    
          8   1   0
    
           *
    
        2   7   4   4
    
           *
    
      4   5   2   6   5
     
     
    #include <cstdio>
    #include <cstring>
    #include <algorithm>
    using namespace std;
    int dp[400][400] ;
    int main()
    {
        int n , i , j , max1 ;
        while(scanf("%d", &n) !=EOF)
        {
            max1 = 0 ;
            memset(dp,0,sizeof(dp));
            for(i = 1 ; i <= n ; i++)
                for(j = 1 ; j <= i ; j++)
                    scanf("%d", &dp[i][j]);
            for(i = 1 ; i <= n ; i++)
                for(j = 1 ; j <= i ; j++)
                    dp[i][j] = max( dp[i-1][j-1],dp[i-1][j] ) + dp[i][j] ;
            for(i = 1 ; i <= n ; i++)
                max1 = max(max1,dp[n][i]);
            printf("%d
    ", max1);
        }
        return 0;
    }
    

     
  • 相关阅读:
    百度地图(25)-GL 标注
    百度地图(24)-GL 地图自定义样式
    百度地图(4)-自定义地图样式
    百度地图(23)-GL 地图属性
    百度地图(22)-GL 添加地图控件
    百度地图(21)-GL 初始化地图
    百度地图(20)-路书
    百度地图(19)-沿线移动
    百度地图(18)-海量数据
    百度地图(17)-热力图
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/5073157.html
Copyright © 2011-2022 走看看