zoukankan      html  css  js  c++  java
  • CF 553A 组合DP

    http://codeforces.com/problemset/problem/553/A

    A. Kyoya and Colored Balls
    time limit per test
    2 seconds
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    Kyoya Ootori has a bag with n colored balls that are colored with k different colors. The colors are labeled from 1 to k. Balls of the same color are indistinguishable. He draws balls from the bag one by one until the bag is empty. He noticed that he drew the last ball of color ibefore drawing the last ball of color i + 1 for all i from 1 to k - 1. Now he wonders how many different ways this can happen.

    Input

    The first line of input will have one integer k (1 ≤ k ≤ 1000) the number of colors.

    Then, k lines will follow. The i-th line will contain ci, the number of balls of the i-th color (1 ≤ ci ≤ 1000).

    The total number of balls doesn't exceed 1000.

    Output

    A single integer, the number of ways that Kyoya can draw the balls from the bag as described in the statement, modulo 1 000 000 007.

    Sample test(s)
    input
    3
    2
    2
    1
    
    output
    3
    
    input
    4
    1
    2
    3
    4
    
    output
    1680
    
    Note

    In the first sample, we have 2 balls of color 1, 2 balls of color 2, and 1 ball of color 3. The three ways for Kyoya are:

    1 2 1 2 3
    1 1 2 2 3
    2 1 1 2 3
    /**
    CF 553A  组合DP
    题目大意:在一个口袋里有n种颜色的小球,每一个小球有ai个,如今从口袋里依次取出小球,要求第i种颜色的最后一个球要在第i+1种颜色的最后一个小球的前面被拿出
              问有多少种取法?
    解题思路:考虑第i种球最后一个球取出来之前前i-1种球必须已经安排好了,那么对于第i种球的ai-1个球仅仅需插入sum[i]之间就可以,故dp[i]=dp[i-1]*c[sum[i]-1][a[i01]];
    */
    #include <string.h>
    #include <stdio.h>
    #include <algorithm>
    #include <iostream>
    using namespace std;
    typedef long long LL;
    const LL mod=1e9+7;
    const int maxn=1200;
    LL c[maxn][maxn],dp[maxn],a[maxn];
    int n;
    void init()
    {
        c[0][0]=1;
        for(int i=1;i<1110;i++)
        {
            c[i][0]=c[i][1]=1;
            for(int j=1;j<=i;j++)
            {
                c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
            }
        }
        /*for(int i=1;i<=10;i++)
        {
            for(int j=0;j<=i;j++)
            {
                printf("%d ",c[i][j]);
            }
            printf("
    ");
        }*/
    }
    int main()
    {
        init();
        while(~scanf("%d",&n))
        {
            for(int i=1;i<=n;i++)
            {
                scanf("%lld",&a[i]);
            }
            int sum=0;
            memset(dp,0,sizeof(dp));
            dp[0]=1;
            for(int i=1;i<=n;i++)
            {
                sum+=a[i];
                dp[i]=(dp[i-1]*c[sum-1][a[i]-1])%mod;
            }
            printf("%lld
    ",dp[n]);
        }
        return 0;
    }
    


  • 相关阅读:
    construction of tuples containing 0 or 1 items
    globals()
    __new__
    ubuntu系统安装mysql登陆提示 解决Mysql ERROR 1045 (28000): Access denied for user 'root'@'localhost'问题
    ubuntu系统更新源
    Python Web开发问题收集(二)
    linux后台执行./run.py提示python syntax error near unexpected token `('
    linux下执行scrapy的爬虫定时任务
    ubuntu系统中crontab的使用介绍
    JMeter BeanShell断言使用
  • 原文地址:https://www.cnblogs.com/lcchuguo/p/5080754.html
Copyright © 2011-2022 走看看