Problem Description
Let A be an integral series {A1, A2, . . . , An}.
The zero-order series of A is A itself.
The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai.
The ith-order series of A is the first-order series of its (i - 1)th-order series (2<=i<=n - 1).
Obviously, the (n - 1)th-order series of A is a single integer. Given A, figure out that integer.
The zero-order series of A is A itself.
The first-order series of A is {B1, B2, . . . , Bn-1},where Bi = Ai+1 - Ai.
The ith-order series of A is the first-order series of its (i - 1)th-order series (2<=i<=n - 1).
Obviously, the (n - 1)th-order series of A is a single integer. Given A, figure out that integer.
Input
The input consists of several test cases. The first line of input gives the number of test cases T (T<=10).
For each test case:
The first line contains a single integer n(1<=n<=3000), which denotes the length of series A.
The second line consists of n integers, describing A1, A2, . . . , An. (0<=Ai<=105)
For each test case:
The first line contains a single integer n(1<=n<=3000), which denotes the length of series A.
The second line consists of n integers, describing A1, A2, . . . , An. (0<=Ai<=105)
Output
For each test case, output the required integer in a line.
Sample Input
2 3 1 2 3 4 1 5 7 2
Sample Output
0 -5
题意:求最后合并的数是多少
思路:JAVA高精度,推出来后发现是系数是杨辉三角。处理出系数后计算结果
import java.math.BigInteger; import java.util.*; import java.io.*; /** * Created by acer on 14-8-7. */ public class Main { public static void main(String[] args) { Scanner cin = new Scanner(System.in); int t, n; t = cin.nextInt(); while (t != 0) { t--; n = cin.nextInt(); BigInteger arr[] = new BigInteger[n]; for (int i = 0; i < n; i++) { arr[i] = cin.nextBigInteger(); } if (n == 1) { System.out.println(arr[0]); continue; } BigInteger ans = new BigInteger("0"); BigInteger C[] = new BigInteger[n + 2]; BigInteger t1 = new BigInteger("0"); BigInteger t2 = new BigInteger("0"); C[0] = BigInteger.valueOf(1); for (int i = 1; i < n; i++) { t1 = BigInteger.valueOf(n-i); t2 = BigInteger.valueOf(i); C[i] = C[i-1].multiply(t1).divide(t2); } int flag = 1; for (int i = n - 1; i >= 0; i--) { if (flag == -1) ans = ans.subtract(arr[i].multiply(C[i])); else ans = ans.add(arr[i].multiply(C[i])); flag *= -1; } System.out.println(ans); } } }