zoukankan      html  css  js  c++  java
  • bzoj4013:[HNOI2015]实验比较

    传送门

    好神的树形dp啊!
    首先考虑=的情况,显然可以将他们缩成一个点
    然后<号可以建出一棵树或者森林来,特判一下成环就无解
    由于有可能出现森林,考虑新建一个根,然后跑tree dp
    我们可以设用(f[i][j])表示以(i)为根的子树中分为(j)个不等的段的方案数。
    然后发现就是一个背包,转移的时候考虑合并
    假设合并后长度为(len),那么(f[i][len]=f[x][len_x]∗f[son][len_{son}]∗C^{len}_{len_x}∗C^{len_{son}−(len−len_x)}_{len_x})
    借用网上形象的比喻
    看做有(k)个盒子,(a)个白球,(b)个黑球,并且(a+b>=k)
    那么(a)个白球放的方案数就是(C^{a}_{k})
    然后(b)个黑球部分要与白球合并,那么合并的方案数就是(C^{b-(k-a)}_a)
    代码:

    #include<cstdio>
    #include<iostream>
    #include<algorithm>
    using namespace std;
    void read(int &x) {
    	char ch; bool ok;
    	for(ok=0,ch=getchar(); !isdigit(ch); ch=getchar()) if(ch=='-') ok=1;
    	for(x=0; isdigit(ch); x=x*10+ch-'0',ch=getchar()); if(ok) x=-x;
    }
    #define rg register
    const int maxn=110,mod=1e9+7;char s[maxn];
    int x[maxn],y[maxn],n,m,fa[maxn],ans,size[maxn],rt,f[maxn],cnt;
    int gg[maxn],g[maxn][maxn],pre[maxn],nxt[maxn],h[maxn],id[maxn],c[maxn][maxn];
    int find(int x){return x==fa[x]?x:fa[x]=find(fa[x]);}
    void add(int x,int y){pre[++cnt]=y,nxt[cnt]=h[x],h[x]=cnt;}
    void prepare(int n)
    {
    	for(rg int i=0;i<=n;i++)c[i][0]=1;
    	for(rg int i=1;i<=n;i++)
    		for(rg int j=1;j<=i;j++)
    			c[i][j]=(c[i-1][j]+c[i-1][j-1])%mod;
    }
    void dfs(int x)
    {
    	size[x]=1,g[x][1]=1;
    	for(rg int i=h[x];i;i=nxt[i])
    	{
    		dfs(pre[i]);
    		for(rg int j=1;j<=size[x]+size[pre[i]];j++)
    		{
    			gg[j]=0;
    			for(rg int k=1;k<=size[x];k++)
    				for(rg int t=1;t<=size[pre[i]];t++)
    					if(k+t>=j)(gg[j]+=1ll*g[x][k]*g[pre[i]][t]%mod*c[j-1][k-1]%mod*c[k-1][k+t-j]%mod)%=mod;
    		}
    		size[x]+=size[pre[i]];
    		for(rg int j=1;j<=size[x];j++)g[x][j]=gg[j];
    	}
    }
    int main()
    {
    	read(n),read(m),rt=n+1,prepare(n);
    	for(rg int i=1;i<=n;i++)fa[i]=i;
    	for(rg int i=1;i<=m;i++)scanf("%d %c %d",&x[i],&s[i],&y[i]);
    	for(rg int i=1;i<=m;i++)if(s[i]=='=')fa[find(x[i])]=find(y[i]);
    	for(rg int i=1;i<=n;i++)id[i]=find(i);
    	for(rg int i=1;i<=m;i++)
    		if(s[i]!='=')
    		{
    			add(id[x[i]],id[y[i]]),f[id[y[i]]]=id[x[i]];
    			int a=find(id[x[i]]),b=find(id[y[i]]);
    			if(a==b){printf("0
    ");return 0;}
    			else fa[a]=b;
    		}
    	for(rg int i=1;i<=n;i++)if(!f[i]&&id[i]==i)add(rt,i);
    	dfs(rt);for(rg int i=1;i<=rt;i++)(ans+=g[rt][i])%=mod;
    	printf("%d
    ",ans);
    }
    
  • 相关阅读:
    数据结构--线性表顺序存储(顺序表)
    图论--双连通分量--点双连通模板
    C++ 模板(template) 的定义
    图论--网络流--最大流 HDU 2883 kebab(离散化)
    图论--网络流--最小割 HDU 2485 Destroying the bus stations(最短路+限流建图)
    图论--网络流--最大流 HDU 3572 Task Schedule(限流建图,超级源汇)
    图论--网络流--最大流--POJ 1698 Alice's Chance
    CodeForces 709C Letters Cyclic Shift
    CodeForces 709B Checkpoints
    CodeForces 709A Juicer
  • 原文地址:https://www.cnblogs.com/lcxer/p/10578415.html
Copyright © 2011-2022 走看看