zoukankan      html  css  js  c++  java
  • Android面试题-OkHttp3源码分析

    本文配套视频:

    源码分析相关面试题

    基本使用

    从使用方法出发,首先是怎么使用,其次是我们使用的功能在内部是如何实现的.建议大家下载 OkHttp 源码之后,跟着本文,过一遍源码。

    官方博客栗子:http://square.github.io/okhttp/#examples

    OkHttpClient client = new OkHttpClient();
    
    String run(String url) throws IOException {
      Request request = new Request.Builder()
          .url(url)
          .build();
    
      Response response = client.newCall(request).execute();
      return response.body().string();
    }

    Request、Response、Call 基本概念

    上面的代码中涉及到几个常用的类:Request、Response和Call。下面分别介绍:

    Request

    每一个HTTP请求包含一个URL、一个方法(GET或POST或其他)、一些HTTP头。请求还可能包含一个特定内容类型的数据类的主体部分。

    Response

    响应是对请求的回复,包含状态码、HTTP头和主体部分。

    Call

    OkHttp使用Call抽象出一个满足请求的模型,尽管中间可能会有多个请求或响应。执行Call有两种方式,同步或异步

    第一步:创建 OkHttpClient对象,进行源码分析:

    OkHttpClient client = new OkHttpClient();`

     

    通过okhttp源码分析,直接创建的 OkHttpClient对象并且默认构造builder对象进行初始化

    public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
      public OkHttpClient() {
           this(new Builder());
      }
      OkHttpClient(Builder builder) {
        this.dispatcher = builder.dispatcher;
        this.proxy = builder.proxy;
        this.protocols = builder.protocols;
        this.connectionSpecs = builder.connectionSpecs;
        this.interceptors = Util.immutableList(builder.interceptors);
        this.networkInterceptors = Util.immutableList(builder.networkInterceptors);
        this.eventListenerFactory = builder.eventListenerFactory;
        this.proxySelector = builder.proxySelector;
        this.cookieJar = builder.cookieJar;
        this.cache = builder.cache;
        this.internalCache = builder.internalCache;
        this.socketFactory = builder.socketFactory;
    
        boolean isTLS = false;
        ......
    
        this.hostnameVerifier = builder.hostnameVerifier;
        this.certificatePinner = builder.certificatePinner.withCertificateChainCleaner(
            certificateChainCleaner);
        this.proxyAuthenticator = builder.proxyAuthenticator;
        this.authenticator = builder.authenticator;
        this.connectionPool = builder.connectionPool;
        this.dns = builder.dns;
        this.followSslRedirects = builder.followSslRedirects;
        this.followRedirects = builder.followRedirects;
        this.retryOnConnectionFailure = builder.retryOnConnectionFailure;
        this.connectTimeout = builder.connectTimeout;
        this.readTimeout = builder.readTimeout;
        this.writeTimeout = builder.writeTimeout;
        this.pingInterval = builder.pingInterval;
      }
    }

    第二步:接下来发起 HTTP 请求

    Request request = new Request.Builder().url("url").build();
    okHttpClient.newCall(request).enqueue(new Callback() {
      @Override
      public void onFailure(Call call, IOException e) {
    
     }
    
    @Override
    public void onResponse(Call call, Response response) throws IOException {
    
    }
    });

    第二步:代码流程分析:

    Request request = new Request.Builder().url("url").build();
    • 1

    初始化构建者模式和请求对象,并且用URL替换Web套接字URL。

    public final class Request {
        public Builder() {
          this.method = "GET";
          this.headers = new Headers.Builder();
        }
        public Builder url(String url) {
          ......
    
          // Silently replace web socket URLs with HTTP URLs.
          if (url.regionMatches(true, 0, "ws:", 0, 3)) {
            url = "http:" + url.substring(3);
          } else if (url.regionMatches(true, 0, "wss:", 0, 4)) {
            url = "https:" + url.substring(4);
          }
    
          HttpUrl parsed = HttpUrl.parse(url);
          ......
          return url(parsed);
        }
        public Request build() {
          ......
          return new Request(this);
        }
    }

    第三步:方法解析:

    okHttpClient.newCall(request).enqueue(new Callback() {
    @Override
    public void onFailure(Call call, IOException e) {
    
    }
    
    @Override
    public void onResponse(Call call, Response response) throws IOException {
    
    }
    });

    源码分析:

    public class OkHttpClient implements Cloneable, Call.Factory, WebSocket.Factory {
       @Override 
       public Call newCall(Request request) {
        return new RealCall(this, request, false /* for web socket */);
       }
    
    
    
    }

    RealCall实现了Call.Factory接口创建了一个RealCall的实例,而RealCall是Call接口的实现。

    异步请求的执行流程

    final class RealCall implements Call {
       @Override 
       public void enqueue(Callback responseCallback) {
       synchronized (this) {
       if (executed) throw new IllegalStateException("Already Executed");
          executed = true;
       }
        captureCallStackTrace();
        client.dispatcher().enqueue(new AsyncCall(responseCallback));
      }
    }

    由以上源码得知:

    1) 检查这个 call 是否已经被执行了,每个 call 只能被执行一次,如果想要一个完全一样的 call,可以利用 call#clone 方法进行克隆。

    2)利用 client.dispatcher().enqueue(this) 来进行实际执行,dispatcher 是刚才看到的 OkHttpClient.Builder 的成员之一

    3)AsyncCall是RealCall的一个内部类并且继承NamedRunnable,那么首先看NamedRunnable类是什么样的,如下:

    public abstract class NamedRunnable implements Runnable {
      ......
    
      @Override 
      public final void run() {
       ......
        try {
          execute();
        }
        ......
      }
    
      protected abstract void execute();
    }

    可以看到NamedRunnable实现了Runnbale接口并且是个抽象类,其抽象方法是execute(),该方法是在run方法中被调用的,这也就意味着NamedRunnable是一个任务,并且其子类应该实现execute方法。下面再看AsyncCall的实现:

    final class AsyncCall extends NamedRunnable {
        private final Callback responseCallback;
    
        AsyncCall(Callback responseCallback) {
          super("OkHttp %s", redactedUrl());
          this.responseCallback = responseCallback;
        }
    
        ......
    final class RealCall implements Call {
      @Override protected void execute() {
      boolean signalledCallback = false;
      try {
         Response response = getResponseWithInterceptorChain();
      if (retryAndFollowUpInterceptor.isCanceled()) {
         signalledCallback = true;
         responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
      } else {
        signalledCallback = true;
        responseCallback.onResponse(RealCall.this, response);
      }
     } catch (IOException e) {
      ......
      responseCallback.onFailure(RealCall.this, e);
    
    } finally {
        client.dispatcher().finished(this);
      }
    }

    AsyncCall实现了execute方法,首先是调用getResponseWithInterceptorChain()方法获取响应,然后获取成功后,就调用回调的onReponse方法,如果失败,就调用回调的onFailure方法。最后,调用Dispatcher的finished方法。

    关键代码:

    responseCallback.onFailure(RealCall.this, new IOException(“Canceled”));

    responseCallback.onResponse(RealCall.this, response);

    走完这两句代码会进行回调到刚刚我们初始化Okhttp的地方,如下:

    okHttpClient.newCall(request).enqueue(new Callback() {
       @Override
       public void onFailure(Call call, IOException e) {
    
       }
    
       @Override
       public void onResponse(Call call, Response response) throws IOException {
    
       }
    });

    核心重点类Dispatcher线程池介绍

    public final class Dispatcher {
      /** 最大并发请求数为64 */
      private int maxRequests = 64;
      /** 每个主机最大请求数为5 */
      private int maxRequestsPerHost = 5;
    
      /** 线程池 */
      private ExecutorService executorService;
    
      /** 准备执行的请求 */
      private final Deque<AsyncCall> readyAsyncCalls = new ArrayDeque<>();
    
      /** 正在执行的异步请求,包含已经取消但未执行完的请求 */
      private final Deque<AsyncCall> runningAsyncCalls = new ArrayDeque<>();
    
      /** 正在执行的同步请求,包含已经取消单未执行完的请求 */
      private final Deque<RealCall> runningSyncCalls = new ArrayDeque<>();

    在OkHttp,使用如下构造了单例线程池

    public synchronized ExecutorService executorService() {
        if (executorService == null) {
          executorService = new ThreadPoolExecutor(0, Integer.MAX_VALUE, 60, TimeUnit.SECONDS,
              new SynchronousQueue<Runnable>(), Util.threadFactory("OkHttp Dispatcher", false));
        }
        return executorService;
      }

    构造一个线程池ExecutorService:

    executorService = new ThreadPoolExecutor(
    //corePoolSize 最小并发线程数,如果是0的话,空闲一段时间后所有线程将全部被销毁
        0, 
    //maximumPoolSize: 最大线程数,当任务进来时可以扩充的线程最大值,当大于了这个值就会根据丢弃处理机制来处理
        Integer.MAX_VALUE, 
    //keepAliveTime: 当线程数大于corePoolSize时,多余的空闲线程的最大存活时间
        60, 
    //单位秒
        TimeUnit.SECONDS,
    //工作队列,先进先出
        new SynchronousQueue<Runnable>(),   
    //单个线程的工厂         
       Util.threadFactory("OkHttp Dispatcher", false));

    可以看出,在Okhttp中,构建了一个核心为[0, Integer.MAX_VALUE]的线程池,它不保留任何最小线程数,随时创建更多的线程数,当线程空闲时只能活60秒,它使用了一个不存储元素的阻塞工作队列,一个叫做”OkHttp Dispatcher”的线程工厂。

    也就是说,在实际运行中,当收到10个并发请求时,线程池会创建十个线程,当工作完成后,线程池会在60s后相继关闭所有线程。

    synchronized void enqueue(AsyncCall call) {
        if (runningAsyncCalls.size() < maxRequests && runningCallsForHost(call) < maxRequestsPerHost) {
          runningAsyncCalls.add(call);
          executorService().execute(call);
        } else {
          readyAsyncCalls.add(call);
        }
      }

    从上述源码分析,如果当前还能执行一个并发请求,则加入 runningAsyncCalls ,立即执行,否则加入 readyAsyncCalls 队列。

    Dispatcher线程池总结

    1)调度线程池Disptcher实现了高并发,低阻塞的实现
    2)采用Deque作为缓存,先进先出的顺序执行
    3)任务在try/finally中调用了finished函数,控制任务队列的执行顺序,而不是采用锁,减少了编码复杂性提高性能

    这里是分析OkHttp源码,并不详细讲线程池原理,如对线程池不了解请参考如下链接

    点我,线程池原理,在文章性能优化最后有视频对线程池原理讲解

    
     try {
            Response response = getResponseWithInterceptorChain();
            if (retryAndFollowUpInterceptor.isCanceled()) {
              signalledCallback = true;
              responseCallback.onFailure(RealCall.this, new IOException("Canceled"));
            } else {
              signalledCallback = true;
              responseCallback.onResponse(RealCall.this, response);
            }
          } finally {
            client.dispatcher().finished(this);
          }

    当任务执行完成后,无论是否有异常,finally代码段总会被执行,也就是会调用Dispatcher的finished函数

     void finished(AsyncCall call) {
        finished(runningAsyncCalls, call, true);
      }
    
    

    从上面的代码可以看出,第一个参数传入的是正在运行的异步队列,第三个参数为true,下面再看有是三个参数的finished方法:

    private <T> void finished(Deque<T> calls, T call, boolean promoteCalls) {
        int runningCallsCount;
        Runnable idleCallback;
        synchronized (this) {
          if (!calls.remove(call)) throw new AssertionError("Call wasn't in-flight!");
          if (promoteCalls) promoteCalls();
          runningCallsCount = runningCallsCount();
          idleCallback = this.idleCallback;
        }
    
        if (runningCallsCount == 0 && idleCallback != null) {
          idleCallback.run();
        }
      }

    打开源码,发现它将正在运行的任务Call从队列runningAsyncCalls中移除后,获取运行数量判断是否进入了Idle状态,接着执行promoteCalls()函数,下面是promoteCalls()方法:

    private void promoteCalls() {
        if (runningAsyncCalls.size() >= maxRequests) return; // Already running max capacity.
        if (readyAsyncCalls.isEmpty()) return; // No ready calls to promote.
    
        for (Iterator<AsyncCall> i = readyAsyncCalls.iterator(); i.hasNext(); ) {
          AsyncCall call = i.next();
    
          if (runningCallsForHost(call) < maxRequestsPerHost) {
            i.remove();
            runningAsyncCalls.add(call);
            executorService().execute(call);
          }
    
          if (runningAsyncCalls.size() >= maxRequests) return; // Reached max capacity.
        }
      }

    主要就是遍历等待队列,并且需要满足同一主机的请求小于maxRequestsPerHost时,就移到运行队列中并交给线程池运行。就主动的把缓存队列向前走了一步,而没有使用互斥锁等复杂编码

    核心重点getResponseWithInterceptorChain方法

    Response getResponseWithInterceptorChain() throws IOException {
        // Build a full stack of interceptors.
        List<Interceptor> interceptors = new ArrayList<>();
        interceptors.addAll(client.interceptors());
        interceptors.add(retryAndFollowUpInterceptor);
        interceptors.add(new BridgeInterceptor(client.cookieJar()));
        interceptors.add(new CacheInterceptor(client.internalCache()));
        interceptors.add(new ConnectInterceptor(client));
        if (!forWebSocket) {
          interceptors.addAll(client.networkInterceptors());
        }
        interceptors.add(new CallServerInterceptor(forWebSocket));
    
        Interceptor.Chain chain = new RealInterceptorChain(
            interceptors, null, null, null, 0, originalRequest);
        return chain.proceed(originalRequest);
      }

    1)在配置 OkHttpClient 时设置的 interceptors;
    2)负责失败重试以及重定向的 RetryAndFollowUpInterceptor;
    3)负责把用户构造的请求转换为发送到服务器的请求、把服务器返回的响应转换为用户友好的响应的 BridgeInterceptor;
    4)负责读取缓存直接返回、更新缓存的 CacheInterceptor;
    5)负责和服务器建立连接的 ConnectInterceptor;
    6)配置 OkHttpClient 时设置的 networkInterceptors;
    7)负责向服务器发送请求数据、从服务器读取响应数据的 CallServerInterceptor。

    OkHttp的这种拦截器链采用的是责任链模式,这样的好处是将请求的发送和处理分开,并且可以动态添加中间的处理方实现对请求的处理、短路等操作。

    从上述源码得知,不管okhttp有多少拦截器最后都会走,如下方法:

    Interceptor.Chain chain = new RealInterceptorChain(
            interceptors, null, null, null, 0, originalRequest);
    return chain.proceed(originalRequest);

    从方法名字基本可以猜到是干嘛的,调用 chain.proceed(originalRequest); 将request传递进来,从拦截器链里拿到返回结果。那么拦截器Interceptor是干嘛的,Chain是干嘛的呢?继续往下看RealInterceptorChain

    RealInterceptorChain类

    下面是RealInterceptorChain的定义,该类实现了Chain接口,在getResponseWithInterceptorChain调用时好几个参数都传的null。

    public final class RealInterceptorChain implements Interceptor.Chain {
    
       public RealInterceptorChain(List<Interceptor> interceptors, StreamAllocation streamAllocation,
            HttpCodec httpCodec, RealConnection connection, int index, Request request) {
            this.interceptors = interceptors;
            this.connection = connection;
            this.streamAllocation = streamAllocation;
            this.httpCodec = httpCodec;
            this.index = index;
            this.request = request;
      }
      ......
    
     @Override 
     public Response proceed(Request request) throws IOException {
        return proceed(request, streamAllocation, httpCodec, connection);
      }
    
      public Response proceed(Request request, StreamAllocation streamAllocation, HttpCodec httpCodec,
          RealConnection connection) throws IOException {
        if (index >= interceptors.size()) throw new AssertionError();
    
        calls++;
    
        ......
    
        // Call the next interceptor in the chain.
        RealInterceptorChain next = new RealInterceptorChain(
            interceptors, streamAllocation, httpCodec, connection, index + 1, request);
        Interceptor interceptor = interceptors.get(index);
        Response response = interceptor.intercept(next);
    
       ......
    
        return response;
      }
    
      protected abstract void execute();
    }

    主要看proceed方法,proceed方法中判断index(此时为0)是否大于或者等于client.interceptors(List )的大小。由于httpStream为null,所以首先创建next拦截器链,主需要把索引置为index+1即可;然后获取第一个拦截器,调用其intercept方法。

    Interceptor 代码如下:

    public interface Interceptor {
      Response intercept(Chain chain) throws IOException;
    
      interface Chain {
        Request request();
    
        Response proceed(Request request) throws IOException;
    
        Connection connection();
      }
    }

    BridgeInterceptor

    BridgeInterceptor从用户的请求构建网络请求,然后提交给网络,最后从网络响应中提取出用户响应。从最上面的图可以看出,BridgeInterceptor实现了适配的功能。下面是其intercept方法:

    public final class BridgeInterceptor implements Interceptor {
      ......
    
    @Override 
    public Response intercept(Chain chain) throws IOException {
      Request userRequest = chain.request();
      Request.Builder requestBuilder = userRequest.newBuilder();
    
     RequestBody body = userRequest.body();
     //如果存在请求主体部分,那么需要添加Content-Type、Content-Length首部
     if (body != null) {
          MediaType contentType = body.contentType();
          if (contentType != null) {
            requestBuilder.header("Content-Type", contentType.toString());
          }
    
          long contentLength = body.contentLength();
          if (contentLength != -1) {
            requestBuilder.header("Content-Length", Long.toString(contentLength));
            requestBuilder.removeHeader("Transfer-Encoding");
          } else {
            requestBuilder.header("Transfer-Encoding", "chunked");
            requestBuilder.removeHeader("Content-Length");
          }
        }
    
        if (userRequest.header("Host") == null) {
          requestBuilder.header("Host", hostHeader(userRequest.url(), false));
        }
    
        if (userRequest.header("Connection") == null) {
          requestBuilder.header("Connection", "Keep-Alive");
        }
    
        // If we add an "Accept-Encoding: gzip" header field we're responsible for also decompressing
        // the transfer stream.
        boolean transparentGzip = false;
        if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) {
          transparentGzip = true;
          requestBuilder.header("Accept-Encoding", "gzip");
        }
    
        List<Cookie> cookies = cookieJar.loadForRequest(userRequest.url());
        if (!cookies.isEmpty()) {
          requestBuilder.header("Cookie", cookieHeader(cookies));
        }
    
      if (userRequest.header("User-Agent") == null) {
          requestBuilder.header("User-Agent", Version.userAgent());
      }
    
    Response networkResponse = chain.proceed(requestBuilder.build());
    
    HttpHeaders.receiveHeaders(cookieJar, userRequest.url(), networkResponse.headers());
    
    Response.Builder responseBuilder = networkResponse.newBuilder()
            .request(userRequest);
    
        if (transparentGzip
            && "gzip".equalsIgnoreCase(networkResponse.header("Content-Encoding"))
            && HttpHeaders.hasBody(networkResponse)) {
          GzipSource responseBody = new GzipSource(networkResponse.body().source());
          Headers strippedHeaders = networkResponse.headers().newBuilder()
              .removeAll("Content-Encoding")
              .removeAll("Content-Length")
              .build();
          responseBuilder.headers(strippedHeaders);
          responseBuilder.body(new RealResponseBody(strippedHeaders, Okio.buffer(responseBody)));
        }
    
        return responseBuilder.build();
      }
    
      /** Returns a 'Cookie' HTTP request header with all cookies, like {@code a=b; c=d}. */
      private String cookieHeader(List<Cookie> cookies) {
        StringBuilder cookieHeader = new StringBuilder();
        for (int i = 0, size = cookies.size(); i < size; i++) {
          if (i > 0) {
            cookieHeader.append("; ");
          }
          Cookie cookie = cookies.get(i);
          cookieHeader.append(cookie.name()).append('=').append(cookie.value());
        }
        return cookieHeader.toString();
      }
    }

    从上面的代码可以看出,首先获取原请求,然后在请求中添加头,比如Host、Connection、Accept-Encoding参数等,然后根据看是否需要填充Cookie,在对原始请求做出处理后,使用chain的procced方法得到响应,接下来对响应做处理得到用户响应,最后返回响应。接下来再看下一个拦截器ConnectInterceptor的处理。

    public final class ConnectInterceptor implements Interceptor {
      ......
    
     @Override 
     public Response intercept(Chain chain) throws IOException {
     RealInterceptorChain realChain = (RealInterceptorChain) chain;
    Request request = realChain.request();
    StreamAllocation streamAllocation = realChain.streamAllocation();
    
     // We need the network to satisfy this request. Possibly for validating a conditional GET.
     boolean doExtensiveHealthChecks = !request.method().equals("GET");
     HttpCodec httpCodec = streamAllocation.newStream(client, doExtensiveHealthChecks);
     RealConnection connection = streamAllocation.connection();
    
     return realChain.proceed(request, streamAllocation, httpCodec, connection);
      }
    }

    实际上建立连接就是创建了一个 HttpCodec 对象,它利用 Okio 对 Socket 的读写操作进行封装,Okio 以后有机会再进行分析,现在让我们对它们保持一个简单地认识:它对 java.io 和 java.nio 进行了封装,让我们更便捷高效的进行 IO 操作。

    CallServerInterceptor

    CallServerInterceptor是拦截器链中最后一个拦截器,负责将网络请求提交给服务器。它的intercept方法实现如下:

    @Override 
    public Response intercept(Chain chain) throws IOException {
        RealInterceptorChain realChain = (RealInterceptorChain) chain;
        HttpCodec httpCodec = realChain.httpStream();
        StreamAllocation streamAllocation = realChain.streamAllocation();
        RealConnection connection = (RealConnection) realChain.connection();
        Request request = realChain.request();
    
        long sentRequestMillis = System.currentTimeMillis();
        httpCodec.writeRequestHeaders(request);
    
        Response.Builder responseBuilder = null;
        if (HttpMethod.permitsRequestBody(request.method()) && request.body() != null) {
          // If there's a "Expect: 100-continue" header on the request, wait for a "HTTP/1.1 100
          // Continue" response before transmitting the request body. If we don't get that, return what
          // we did get (such as a 4xx response) without ever transmitting the request body.
          if ("100-continue".equalsIgnoreCase(request.header("Expect"))) {
            httpCodec.flushRequest();
            responseBuilder = httpCodec.readResponseHeaders(true);
          }
    
          if (responseBuilder == null) {
            // Write the request body if the "Expect: 100-continue" expectation was met.
            Sink requestBodyOut = httpCodec.createRequestBody(request, request.body().contentLength());
            BufferedSink bufferedRequestBody = Okio.buffer(requestBodyOut);
            request.body().writeTo(bufferedRequestBody);
            bufferedRequestBody.close();
          } else if (!connection.isMultiplexed()) {
            // If the "Expect: 100-continue" expectation wasn't met, prevent the HTTP/1 connection from
            // being reused. Otherwise we're still obligated to transmit the request body to leave the
            // connection in a consistent state.
            streamAllocation.noNewStreams();
          }
        }
    
        httpCodec.finishRequest();
    
        if (responseBuilder == null) {
          responseBuilder = httpCodec.readResponseHeaders(false);
        }
    
        Response response = responseBuilder
            .request(request)
            .handshake(streamAllocation.connection().handshake())
            .sentRequestAtMillis(sentRequestMillis)
            .receivedResponseAtMillis(System.currentTimeMillis())
            .build();
    
        int code = response.code();
        if (forWebSocket && code == 101) {
          // Connection is upgrading, but we need to ensure interceptors see a non-null response body.
          response = response.newBuilder()
              .body(Util.EMPTY_RESPONSE)
              .build();
        } else {
          response = response.newBuilder()
              .body(httpCodec.openResponseBody(response))
              .build();
        }
    
        if ("close".equalsIgnoreCase(response.request().header("Connection"))
            || "close".equalsIgnoreCase(response.header("Connection"))) {
          streamAllocation.noNewStreams();
        }
    
        if ((code == 204 || code == 205) && response.body().contentLength() > 0) {
          throw new ProtocolException(
              "HTTP " + code + " had non-zero Content-Length: " + response.body().contentLength());
        }
    
        return response;
      }

    从上面的代码中可以看出,首先获取HttpStream对象,然后调用writeRequestHeaders方法写入请求的头部,然后判断是否需要写入请求的body部分,最后调用finishRequest()方法将所有数据刷新给底层的Socket,接下来尝试调用readResponseHeaders()方法读取响应的头部,然后再调用openResponseBody()方法得到响应的body部分,最后返回响应。

    最后总结

    OkHttp的底层是通过Java的Socket发送HTTP请求与接受响应的(这也好理解,HTTP就是基于TCP协议的),但是OkHttp实现了连接池的概念,即对于同一主机的多个请求,其实可以公用一个Socket连接,而不是每次发送完HTTP请求就关闭底层的Socket,这样就实现了连接池的概念。而OkHttp对Socket的读写操作使用的OkIo库进行了一层封装。

    版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/mwq384807683/article/details/71173442
  • 相关阅读:
    删除 SQL Server 2005 Express 工具
    静态和非静态
    C#中的托管和非托管
    类和结构的区别
    asp.net URL DES加密 什在URL中的使用
    正则替换图片路径
    Oracle 正则 一行转多行
    Oracle 存储过程
    HTTP SOAP Request
    jquery 高亮
  • 原文地址:https://www.cnblogs.com/ldq2016/p/8796526.html
Copyright © 2011-2022 走看看