题目大意:
给定一个区间范围[M,E],接下来有n行输入。每行输入三个数值:T1,T2,S,表示覆盖区间[T1,T2]
的代价为S,要求你求出覆盖区间[M,E]的最小代价,假设不能覆盖。则输出-1.
解题思路:
先将区间按右端点进行排序,这样我们就能得到dp状态的定义和转移方程:
dp[i]:表示覆盖[M,cow[i].T2]的最小覆盖代价.
dp[i] = cow[i].cost (cow[i].l == M) 或者 dp[i] = min(dp[j~i]) + cow[i].cost(cow[j].T2 >= cow[i].T1-1)
因为右端点可能有重合的情况,所以我们的dp[i]中可能存放的并非最小覆盖代价。当然了,
我们能够对右端点进行离散化。然后去重。这样dp数组里面存放的就是最优解。只是这添加了
编程的复杂度,代码量也加大不少.事实上。我们依旧能够用上述dp定义,最后dp[j~i]cow[j].T2==cow[i].T2)
的最小值就能够了.关于dp[i] = min(dp[j~i]) + cow[i].cost,是个RMQ问题,这里我用的是线段树实现的.
以下是解题代码,代码中对空间进行了优化,所以代码中并没有dp数组,其值都存放在线段树中.
#include<stdio.h>
#include<algorithm>
#define MAX_N 11000
#define INF 100000000000
#define lson l,m,rt<<1
#define rson m+1,r,rt<<1|1
using namespace std;
struct Node
{
int l,r,c;
bool operator < (const Node &tmp) const
{
return r < tmp.r;
}
}cow[MAX_N];
long long tree[MAX_N<<2];
void build(int l,int r,int rt)
{
tree[rt] = INF ;
if( l == r)
return;
int m = l + ( r - l ) / 2 ;
build(lson);
build(rson);
}
long long query(int L,int R,int l,int r,int rt)
{
if(L <= l && r <= R)
return tree[rt];
int m = l + ( r - l ) / 2 ;
long long tmp = INF;
if(L <= m)
tmp = query(L,R,lson);
if(R > m)
tmp = min(tmp,query(L,R,rson));
return tmp;
}
void update(int pos,long long val,int l,int r,int rt)
{
if(l == r)
{
tree[rt] = val ;
return;
}
int m = l + ( r - l ) / 2 ;
if(pos <= m)
update(pos,val,lson);
else
update(pos,val,rson);
tree[rt] = min(tree[rt<<1],tree[rt<<1|1]);
}
//去掉不满足条件的区间
int init(int n)
{
int cnt = 0 , r_max = cow[0].r ;
for(int i=1;i<n;++i)
{
if(cow[i].r != cow[i-1].r)
r_max = cow[cnt].r ;
if(cow[i].l - 1 <= r_max)
cow[++cnt] = cow[i];
}
return cnt;
}
int Bin(int key,int l,int r)
{
while(l <= r)
{
int m = l + ( r - l ) / 2 ;
if(cow[m].r < key)
l = m + 1 ;
else
r = m - 1 ;
}
return l;
}
int main()
{
int n,m,e;
while(~scanf("%d%d%d",&n,&m,&e))
{
int l_min = 90000 , r_max = 0 ;
for(int i=0;i<n;++i)
{
scanf("%d%d%d",&cow[i].l,&cow[i].r,&cow[i].c);
l_min = min(l_min,cow[i].l);
r_max = max(r_max,cow[i].r);
}
sort(cow,cow+n);
n = init(n) ;
if(l_min > m || r_max < e || cow[n].r < e)
{
printf("-1
");
continue;
}
build(0,n,1);
for(int i=0;i<=n;++i)
{
long long tmp;
if(cow[i].l == m)
tmp = (long long)cow[i].c ;
else
tmp = query(Bin(cow[i].l-1,0,i),i,0,n,1) + cow[i].c;
update(i,tmp,0,n,1);
}
printf("%I64d
",query(Bin(cow[n].r,0,n),n,0,n,1));
}
return 0;
}