比較基础的题目
首先边肯定是要反着加的
然后能够用tarjan一次求出来全部的scc
这个也就是缩点
然后看有几个点入度是0
这个点指得是强连通分量
假设入度为0 的点仅仅有一个就直接把这个点的点数输出
否则输0
没了
#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <stack>
#define MAX 50009
#define rep(i,j,k) for(int i = j; i <= k; i++)
using namespace std;
int to[2 * MAX], next[2 * MAX], head[MAX];
int SccNum = 0, DfsClock = 0, dfn[MAX], low[MAX], num[MAX], In[MAX], in[MAX];
int tot = 0, scc[MAX], n, m;
stack <int> s;
inline void add (int x, int y)
{
to[++tot] = y;
next[tot] = head[x];
head[x] = tot;
}
void tarjan (int x)
{
dfn[x] = low[x] = ++DfsClock;
in[x] = 1;
s.push (x);
for (int i = head[x]; i; i = next[i])
if (!dfn[to[i]])
{
tarjan (to[i]);
low[x] = min (low[x], low[to[i]]);
}
else
if (in[to[i]])
low[x] = min (low[x], dfn[to[i]]);
if (low[x] == dfn[x])
{
SccNum++;
while (1)
{
num[SccNum]++;
int now = s.top();
s.pop ();
in[now] = 0;
scc[now] = SccNum;
if (now == x)
break;
}
}
}
int main()
{
scanf ("%d%d", &n, &m);
rep (i, 1, m)
{
int a1, a2;
scanf ("%d%d", &a1, &a2);
add (a2, a1);
}
rep (i, 1, n)
if (!dfn[i])
tarjan (i);
rep (i, 1, n)
for (int j = head[i]; j; j = next[j])
if (scc[i] != scc[to[j]])
In[scc[to[j]]]++;
// rep (i, 1, SccNum)
// printf ("%d-- %d
", i, num[i]);
int ans = 0, u = 0;
rep (i, 1, SccNum)
if (!In[i])
ans = num[i], u++;
if (u == 1)
printf ("%d
", ans);
else
printf ("0
");
return 0;
}