zoukankan      html  css  js  c++  java
  • C. DZY Loves Sequences


    C. DZY Loves Sequences
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    DZY has a sequence a, consisting of n integers.

    We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

    Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

    You only need to output the length of the subsegment you find.

    Input

    The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

    Output

    In a single line print the answer to the problem — the maximum length of the required subsegment.

    Sample test(s)
    input
    6
    7 2 3 1 5 6
    
    output
    5
    
    Note

    You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.


    本题坑还算比較多的,我用的递推,dp1[i]表示以i结尾的递增序列的长度,dp2[i]表示已i開始的递增序列的长度,要找出最长的仅仅改变一个数就能构成递增序列的序列长度仅仅须要枚举i即可了,代码例如以下

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    typedef long long LL;
    using namespace std;
    int A[100005];
    int dp1[100005],dp2[100005];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            memset(dp1,0,sizeof(dp1));
            memset(dp2,0,sizeof(dp2));
            scanf("%d",A+1);
            dp1[1]=1;
            for(int i=2;i<=n;i++)
            {
                scanf("%d",A+i);
                if(A[i]>A[i-1])dp1[i]=dp1[i-1]+1;
                else dp1[i]=1;
            }
            dp2[n]=1;
            for(int i=n-1;i>=1;i--)
            {
                if(A[i]<A[i+1])dp2[i]=dp2[i+1]+1;
                else dp2[i]=1;
            }
            int m=1;
            A[0]=0;
            A[n+1]=1000000005;
            for(int i=1;i<=n;i++){
                    int t=dp1[i-1]+dp2[i+1]+1;
                    if(A[i+1]-A[i-1]<2)t=max(dp1[i],dp2[i])+1;
                    m=max(m,t);
            }
            cout<<m<<endl;
        }
        return 0;
    }




查看全文
  • 相关阅读:
    Gradle学习之基础篇
    springmvc上传文件方法及注意事项
    SpringCloud学习之feign
    SpringCloud学习之eureka集群配置
    SpringMvc+Spring+MyBatis 基于注解整合
    SpringBoot学习之SpringBoot执行器
    SpringBoot跨域问题解决方案
    SpringCloud学习之快速搭建分布式配置
    MySQL-Innodb存储结构
    PG-流复制
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10916588.html
  • Copyright © 2011-2022 走看看