zoukankan      html  css  js  c++  java
  • C. DZY Loves Sequences


    C. DZY Loves Sequences
    time limit per test
    1 second
    memory limit per test
    256 megabytes
    input
    standard input
    output
    standard output

    DZY has a sequence a, consisting of n integers.

    We'll call a sequence ai, ai + 1, ..., aj (1 ≤ i ≤ j ≤ n) a subsegment of the sequence a. The value (j - i + 1) denotes the length of the subsegment.

    Your task is to find the longest subsegment of a, such that it is possible to change at most one number (change one number to any integer you want) from the subsegment to make the subsegment strictly increasing.

    You only need to output the length of the subsegment you find.

    Input

    The first line contains integer n (1 ≤ n ≤ 105). The next line contains n integers a1, a2, ..., an (1 ≤ ai ≤ 109).

    Output

    In a single line print the answer to the problem — the maximum length of the required subsegment.

    Sample test(s)
    input
    6
    7 2 3 1 5 6
    
    output
    5
    
    Note

    You can choose subsegment a2, a3, a4, a5, a6 and change its 3rd element (that is a4) to 4.


    本题坑还算比較多的,我用的递推,dp1[i]表示以i结尾的递增序列的长度,dp2[i]表示已i開始的递增序列的长度,要找出最长的仅仅改变一个数就能构成递增序列的序列长度仅仅须要枚举i即可了,代码例如以下

    #include<iostream>
    #include<cstdio>
    #include<algorithm>
    #include<cstring>
    typedef long long LL;
    using namespace std;
    int A[100005];
    int dp1[100005],dp2[100005];
    int main()
    {
        int n;
        while(scanf("%d",&n)!=EOF)
        {
            memset(dp1,0,sizeof(dp1));
            memset(dp2,0,sizeof(dp2));
            scanf("%d",A+1);
            dp1[1]=1;
            for(int i=2;i<=n;i++)
            {
                scanf("%d",A+i);
                if(A[i]>A[i-1])dp1[i]=dp1[i-1]+1;
                else dp1[i]=1;
            }
            dp2[n]=1;
            for(int i=n-1;i>=1;i--)
            {
                if(A[i]<A[i+1])dp2[i]=dp2[i+1]+1;
                else dp2[i]=1;
            }
            int m=1;
            A[0]=0;
            A[n+1]=1000000005;
            for(int i=1;i<=n;i++){
                    int t=dp1[i-1]+dp2[i+1]+1;
                    if(A[i+1]-A[i-1]<2)t=max(dp1[i],dp2[i])+1;
                    m=max(m,t);
            }
            cout<<m<<endl;
        }
        return 0;
    }




查看全文
  • 相关阅读:
    YARN简短的建筑
    Codeforces Round #274 (Div. 2) B. Towers
    基于PaaS人事部门间平台多重身份的技术解决方案
    android(9)_数据存储和访问3_scard基本介绍
    google搜索小技巧
    纯CSS实现垂直居中的几种方法
    关于网站的SYN_RECV(SYN_RECEIVED)***的防范措施
    网络的FIN_WAIT_2状态解释和分析
    jQuery对checkbox的各种操作
    0.0.0.0 与 127.0.0.1的区别
  • 原文地址:https://www.cnblogs.com/ldxsuanfa/p/10916588.html
  • Copyright © 2011-2022 走看看