这么多工具和基因组版本,选择困难症犯了,到底用哪个好呢?
2018 nature - Developmental diversification of cortical inhibitory interneurons : ENSEMBL release 84 Mus musculus genome
2017 Molecular Cell - Single-Cell Alternative Splicing Analysis with Expedition Reveals Splicing Dynamics during Neuron Differentiation : STAR, human genome (hg19), using GENCODE (v19) gene annotations; sailfish - GENCODE v19 protein-coding and long non-coding RNA annotation. Outrigger
2017 - Science - Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors : UCSC hg19 transcriptome; RSEM; TPM; 可行但是不完美,建议用count
2017 - Cell - Single-Cell Analysis of Human Pancreas Reveals Transcriptional Signatures of Aging and Somatic Mutation Patterns : cutadapt; hg19;
2015 - Cell Stem Cell - Single-Cell Transcriptome Analysis Reveals Dynamic Changes in lncRNA Expression during Reprogramming : TopHat; mm9; Cufflinks; DESeq
2017 - Nature - : UCSC mm10 mouse transcriptome using Bowtie; RSEM
小结:
QC: cutadaptb不错哦
如果只想进行定量,那就用bowtie、bowtie2比对,再用RSEM定量,这CNS用得最多;但是,单细胞能用TPM吗?显然不行,因为表达基因的数量差异太大了,这会带来很严重的偏差。
如果想要Reads count,那还是用FeatureCounts吧。(网上貌似说FeatureCounts比HTseq算法更好一些,但是HTseq2015年发表以来,引用了3000多次了,真是纠结选哪个!!!)
参考:Compariosn Htseq And Feature Count
http://bioinformatics.cvr.ac.uk/blog/featurecounts-or-htseq-count/
http://genomespot.blogspot.hk/2014/09/read-counting-with-featurecounts.html
如果想鉴定可变剪切,那就必须Tophat、Hisat2和STAR中选了,Hisat2引用少得可怜;为什么大家都不用呢?STAR的引用秒杀它,Tophat就太老了,不用也罢。