协方差分析是方差分析、回归分析和协方差的结合体。
我觉得这种分析思想非常实用,尤其是对confounder云集的生物学数据。
回顾:
什么是协方差?co-vary
协方差和相关性?standardize
协方差分析最经典的一个例子就是GWAS中移除SNP中的人种因素。
If you are worried about leaving out covariates you could regress out them first and analyse the residuals against the Snps.
在实验设计中,协变量是独立变量,实验者不能操纵,但仍影响实验结果。
我想知道温度对于降水量的影响,但是海拔高度、经纬度、当地湿度等变量也会影响降水量。那么,在我的研究中,温度就是自变量,降水量是应变量,而海拔高度、经纬度和当地湿度就是协变量。
> input <- mtcars[,c("am","mpg","hp")]
> print(head(input))
am mpg hp
Mazda RX4 1 21.0 110
Mazda RX4 Wag 1 21.0 110
Datsun 710 1 22.8 93
Hornet 4 Drive 0 21.4 110
Hornet Sportabout 0 18.7 175
Valiant 0 18.1 105
> # Get the dataset.
> input <- mtcars
> # Create the regression model.
> result <- aov(mpg~hp*am,data = input)
> print(summary(result))
Df Sum Sq Mean Sq F value Pr(>F)
hp 1 678.4 678.4 77.391 1.50e-09 ***
am 1 202.2 202.2 23.072 4.75e-05 ***
hp:am 1 0.0 0.0 0.001 0.981
Residuals 28 245.4 8.8
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> # Get the dataset.
> input <- mtcars
> # Create the regression model.
> result <- aov(mpg~hp+am,data = input)
> print(summary(result))
Df Sum Sq Mean Sq F value Pr(>F)
hp 1 678.4 678.4 80.15 7.63e-10 ***
am 1 202.2 202.2 23.89 3.46e-05 ***
Residuals 29 245.4 8.5
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
> # Get the dataset.
> input <- mtcars
> # Create the regression models.
> result1 <- aov(mpg~hp*am,data = input)
> result2 <- aov(mpg~hp+am,data = input)
> # Compare the two models.
> print(anova(result1,result2))
Analysis of Variance Table
Model 1: mpg ~ hp * am
Model 2: mpg ~ hp + am
Res.Df RSS Df Sum of Sq F Pr(>F)
1 28 245.43
2 29 245.44 -1 -0.0052515 6e-04 0.9806
参考: