zoukankan      html  css  js  c++  java
  • (转)决定系数R2

    有些讲得太烂了,我来通俗的梳理一下R2.

    Calculating R-squared

    在线性回归的模型下,我们可以计算SE(line), SE(y均值)。

    The statistic R2describes the proportion of variance in the response variable explained by the predictor variable

    如何理解这句话,Y本身就有自己的SE,在模型下,Y与其预测值之间又有一个SE,如果模型完全拟合,那么SE(line)=0. 此时的R2就是1,也就是所有的方差都被该模型解释了(可以想象成一种完全过拟合的模型。)


    决定系数(coefficient ofdetermination),有的教材上翻译为判定系数,也称为拟合优度。

    决定系数反应了y的波动有多少百分比能被x的波动所描述,即表征依变数Y的变异中有多少百分比,可由控制的自变数X来解释.

    决定系数的数值恰巧等于相关系数的平方。

    表达式:R2=SSR/SST=1-SSE/SST

    其中:SST=SSR+SSE,SST(total sum of squares)为总平方和,SSR(regression sum of squares)为回归平方和,SSE(error sum of squares) 为残差平方和。

    数据的组间变异/总变异*100%,就是所谓的R-square.

    组内变异(SSE)+组间变异(SSA)=总变异(SST),可以推出公式R squared=1-SSE/SST;具体组内变异和组间变异及总变异的计算估计你会的就不写了。

    回归平方和:SSR(Sum of Squares forregression) = ESS (explained sum of squares)

    残差平方和:SSE(Sum of Squares for Error) = RSS(residual sum of squares)

    总离差平方和:SST(Sum of Squares fortotal) = TSS(total sum of squares)

    SSE+SSR=SST RSS+ESS=TSS

     

    意义:拟合优度越大,自变量对因变量的解释程度越高,自变量引起的变动占总变动的百分比高。观察点在回归直线附近越密集。

    取值范围:0-1.

    举例:

    假设有10个点,如下图:

     

    我们R来实现如何求线性方程和R2:

    # 线性回归的方程
    mylr = function(x,y){
      
      plot(x,y)
      
      x_mean = mean(x)
      y_mean = mean(y)
      xy_mean = mean(x*y)
      xx_mean = mean(x*x)
      yy_mean = mean(y*y)
      
      m = (x_mean*y_mean - xy_mean)/(x_mean^2 - xx_mean)
      b = y_mean - m*x_mean
      
      
      f = m*x+b# 线性回归方程
      
      lines(x,f)
      
      sst = sum((y-y_mean)^2)
      sse = sum((y-f)^2)
      ssr = sum((f-y_mean)^2)
      
      result = c(m,b,sst,sse,ssr)
      names(result) = c('m','b','sst','sse','ssr')
      
      return(result)
    }
     
    x = c(60,34,12,34,71,28,96,34,42,37)
    y = c(301,169,47,178,365,126,491,157,202,184)
     
    f = mylr(x,y)
     
    f['m']
    f['b']
    f['sse']+f['ssr']
    f['sst']
     
    R2 = f['ssr']/f['sst']
    

    最后方程为:f(x)=5.3x-15.5

    R2为99.8,说明x对y的解释程度非常高。

      

    ---------------------
    作者:snowdroptulip
    来源:CSDN
    原文:https://blog.csdn.net/snowdroptulip/article/details/79022532
    版权声明:本文为博主原创文章,转载请附上博文链接!

  • 相关阅读:
    怎么保存退出vi编辑
    rpmlib(PayloadIsLzma) <= 4.4.6-1 is needed【转载】
    自制rpm包
    程序员应该具备的十个代码习惯
    面试时可以问的问题
    Git教程(二)-如何上传和同步自己的git项目
    Git教程及问题解析
    HTML5调用百度地图API进行地理定位实例
    PHP基于单例模式编写PDO类的方法
    PHP输出缓存ob系列函数详解
  • 原文地址:https://www.cnblogs.com/leezx/p/9929678.html
Copyright © 2011-2022 走看看