zoukankan      html  css  js  c++  java
  • JZOJ 3167.查税

    \(\text{Solution}\)

    \(k\) 这个办公室相关属性有 \(t,z,s\)
    对于以后的某一天 \(T\),其账户余额为 \((T-t)z+s\)
    要最大化这东西,不妨另 \(b=(T-t)z+s\)
    则等价于 \(tz-s=Tz-b\),要最大化 \(-b\) 即最小化 \(b\)
    \((z,tz-s)\) 视为坐标系一点,用斜率为 \(T\) 的直线过点,最小化截距
    \(T\) 递增
    那么就是很简单的维护凸包的题了
    但发现能用的办公室为一个区间,且需要支持加点和删点
    考虑分块,每个块内维护一个凸包
    修改只涉及一个点所在的块,直接暴力重构凸包
    为支持操作需要辅助数组记录一些信息,这些都是小细节了

    \(\text{Code}\)

    #include <cstdio>
    #include <iostream>
    #include <cmath>
    #define RE register
    #define IN inline
    #define LL long long
    using namespace std;
    
    const int N = 1e5 + 5, M = 325;
    const LL INF = 0x3f3f3f3f3f3f3f3f;
    int n, m, st[M], ed[M], id[N], L[M], R[M], bz[N], bb[N], aa[M][M], ct[M];
    struct Point{LL x, y;}a[N], b[M][M], c[M][M];
    
    IN void Prework()
    {
    	int num = sqrt(n);
    	for(RE int i = 1; i <= num; i++)
    	{
    		st[i] = ed[i - 1] + 1, ed[i] = (i == num ? n : ed[i - 1] + n / num);
    		for(RE int j = st[i]; j <= ed[i]; j++) id[j] = i;
    	}
    }
    IN double slope(Point a, Point b)
    {
    	if (a.x == b.x) return INF;
    	return 1.0 * (a.y - b.y) / (a.x - b.x);
    }
    IN void Rebuild(int l)
    {
    	int x = id[l];
    	if (bb[l])
    	{
    		for(RE int i = bb[l]; i < ct[x]; i++) b[x][i] = b[x][i + 1], bb[aa[x][i] = aa[x][i + 1]] = i;
    		--ct[x], bb[l] = 0;
    	}
    	for(RE int i = 1; i <= ct[x]; i++)
    	if (b[x][i].x > a[l].x || (b[x][i].x == a[l].x && b[x][i].y > a[l].y))
    	{
    		for(RE int j = ct[x] + 1; j > i; j--) b[x][j] = b[x][j - 1], bb[aa[x][j] = aa[x][j - 1]] = j;
    		b[x][i] = a[l], aa[x][i] = l, bb[l] = i, ++ct[x];
    		break;
    	}
    	if (!bb[l]) b[x][++ct[x]] = a[l], aa[x][ct[x]] = l, bb[l] = ct[x];
    	L[x] = R[x] = 0;
    	for(RE int i = 1; i <= ct[x]; i++)
    	{
    		while (R[x] && slope(c[x][R[x]], c[x][R[x] - 1]) > slope(b[x][i], c[x][R[x]])) --R[x];
    		c[x][++R[x]] = b[x][i];
    	}
    	if (R[x]) L[x] = 1;
    }
    IN LL query(int x, int T)
    {
    	while (L[x] < R[x] && slope(c[x][L[x]], c[x][L[x] + 1]) < T) ++L[x];
    	if (L[x]) return c[x][L[x]].x * T - c[x][L[x]].y;
    	return -INF;
    }
    IN LL Query(int T, int l, int r)
    {
    	if (l > r) swap(l, r);
    	int x = id[l], y = id[r]; LL ans = -INF;
    	if (x == y)
    	{
    		for(RE int i = l; i <= r; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
    		return ans;
    	}
    	for(RE int i = l; i <= ed[x]; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
    	for(RE int i = st[y]; i <= r; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
    	for(RE int i = x + 1; i < y; i++) ans = max(ans, query(i, T));
    	return ans;
    }
    IN void read(int &x)
    {
    	x = 0; char ch = getchar(); int f = 1;
    	for(; !isdigit(ch); f = (ch == '-' ? -1 : f), ch = getchar());
    	for(; isdigit(ch); x = (x<<3)+(x<<1)+(ch^48), ch = getchar());
    	if (f - 1) x = ~x + 1;
    }
    
    int main()
    {
    	read(n), read(m), Prework();
    	for(RE int op, t, k, z, s; m; --m)
    	{
    		read(op), read(t), read(k), read(z);
    		if (op == 1) read(s), bz[k] = 1, a[k] = (Point){z, (LL)z * t - s}, Rebuild(k);
    		else{
    			LL ans = Query(t, k, z);
    			if (ans == -INF) printf("nema\n");
    			else printf("%lld\n", ans);
    		}
    	}
    }
    
  • 相关阅读:
    oracle 查詢表字段明細、字段注釋、表註釋
    Linux Oracle服务启动&停止脚本与开机自启动
    Tomcat7中配置Oracle 11g数据库DBCP连接池
    使用 Tomcat 7 新的连接池 —— Tomcat jdbc pool
    【转】Linux下常用压缩 解压命令和压缩比率对比
    【转】HttpClient容易忽视的细节——连接关闭
    JAVA实现图片验证码
    Flyme密码验证策略升级,忘记锁屏密码及「关机密码」功能
    【转】SpringBoot自定义序列化的使用方式--WebMvcConfigurationSupport
    inux中查看各文件夹大小命令:du -h --max-depth=1
  • 原文地址:https://www.cnblogs.com/leiyuanze/p/15642229.html
Copyright © 2011-2022 走看看