\(\text{Solution}\)
记 \(k\) 这个办公室相关属性有 \(t,z,s\)
对于以后的某一天 \(T\),其账户余额为 \((T-t)z+s\)
要最大化这东西,不妨另 \(b=(T-t)z+s\)
则等价于 \(tz-s=Tz-b\),要最大化 \(-b\) 即最小化 \(b\)
把 \((z,tz-s)\) 视为坐标系一点,用斜率为 \(T\) 的直线过点,最小化截距
且 \(T\) 递增
那么就是很简单的维护凸包的题了
但发现能用的办公室为一个区间,且需要支持加点和删点
考虑分块,每个块内维护一个凸包
修改只涉及一个点所在的块,直接暴力重构凸包
为支持操作需要辅助数组记录一些信息,这些都是小细节了
\(\text{Code}\)
#include <cstdio>
#include <iostream>
#include <cmath>
#define RE register
#define IN inline
#define LL long long
using namespace std;
const int N = 1e5 + 5, M = 325;
const LL INF = 0x3f3f3f3f3f3f3f3f;
int n, m, st[M], ed[M], id[N], L[M], R[M], bz[N], bb[N], aa[M][M], ct[M];
struct Point{LL x, y;}a[N], b[M][M], c[M][M];
IN void Prework()
{
int num = sqrt(n);
for(RE int i = 1; i <= num; i++)
{
st[i] = ed[i - 1] + 1, ed[i] = (i == num ? n : ed[i - 1] + n / num);
for(RE int j = st[i]; j <= ed[i]; j++) id[j] = i;
}
}
IN double slope(Point a, Point b)
{
if (a.x == b.x) return INF;
return 1.0 * (a.y - b.y) / (a.x - b.x);
}
IN void Rebuild(int l)
{
int x = id[l];
if (bb[l])
{
for(RE int i = bb[l]; i < ct[x]; i++) b[x][i] = b[x][i + 1], bb[aa[x][i] = aa[x][i + 1]] = i;
--ct[x], bb[l] = 0;
}
for(RE int i = 1; i <= ct[x]; i++)
if (b[x][i].x > a[l].x || (b[x][i].x == a[l].x && b[x][i].y > a[l].y))
{
for(RE int j = ct[x] + 1; j > i; j--) b[x][j] = b[x][j - 1], bb[aa[x][j] = aa[x][j - 1]] = j;
b[x][i] = a[l], aa[x][i] = l, bb[l] = i, ++ct[x];
break;
}
if (!bb[l]) b[x][++ct[x]] = a[l], aa[x][ct[x]] = l, bb[l] = ct[x];
L[x] = R[x] = 0;
for(RE int i = 1; i <= ct[x]; i++)
{
while (R[x] && slope(c[x][R[x]], c[x][R[x] - 1]) > slope(b[x][i], c[x][R[x]])) --R[x];
c[x][++R[x]] = b[x][i];
}
if (R[x]) L[x] = 1;
}
IN LL query(int x, int T)
{
while (L[x] < R[x] && slope(c[x][L[x]], c[x][L[x] + 1]) < T) ++L[x];
if (L[x]) return c[x][L[x]].x * T - c[x][L[x]].y;
return -INF;
}
IN LL Query(int T, int l, int r)
{
if (l > r) swap(l, r);
int x = id[l], y = id[r]; LL ans = -INF;
if (x == y)
{
for(RE int i = l; i <= r; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
return ans;
}
for(RE int i = l; i <= ed[x]; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
for(RE int i = st[y]; i <= r; i++) if (bz[i]) ans = max(ans, a[i].x * T - a[i].y);
for(RE int i = x + 1; i < y; i++) ans = max(ans, query(i, T));
return ans;
}
IN void read(int &x)
{
x = 0; char ch = getchar(); int f = 1;
for(; !isdigit(ch); f = (ch == '-' ? -1 : f), ch = getchar());
for(; isdigit(ch); x = (x<<3)+(x<<1)+(ch^48), ch = getchar());
if (f - 1) x = ~x + 1;
}
int main()
{
read(n), read(m), Prework();
for(RE int op, t, k, z, s; m; --m)
{
read(op), read(t), read(k), read(z);
if (op == 1) read(s), bz[k] = 1, a[k] = (Point){z, (LL)z * t - s}, Rebuild(k);
else{
LL ans = Query(t, k, z);
if (ans == -INF) printf("nema\n");
else printf("%lld\n", ans);
}
}
}