zoukankan      html  css  js  c++  java
  • JZOJ 5062. 【GDOI2017第二轮模拟day1】航海舰队

    \(\text{Solution}\)

    这还是 [Lydsy2017省队十连测] 的题
    不得不说 \(FFT\) 在字符串匹配中的妙啊!
    前面做了道一维的题,现在这是二维的
    从题目入手,不考虑可不可达
    如果舰队从天而降,考虑其可以落到以那些点为左上角的点
    先将地图压成一维,一行接着一行,礁石处为 \(1\) 其余为 \(0\)
    抽出包含舰队的最小矩形,按照原来地图行长,从矩阵开头到结尾压成一维,舰队处为 \(1\),其余为 \(0\)
    构造匹配函数 \(F_i\) 表示大矩形以 \(i\) 为左上角能否匹配,\(F_i =\sum_j A_{i+j}\cdot B_j\)
    \(F_i = 0\) 是可行,将 \(A\) 翻转,\(F_i=\sum_j A_{n\cdot m-1-i-j}\cdot B_j\)
    这是一个多项式卷积形式,\(NTT\) 即可
    于是我们得到了若干个可放入舰队的左上角
    我们还要知道那些左上角可达,从小矩阵左上角开始 \(BFS\) 即可
    然而我们仍需要那些空地可以被舰队掠过
    考虑将可达左上角即为 \(1\),其余为 \(0\)\(B\) 中舰队为 \(1\)
    那么 \(i\) 位置可达,需要存在一个可达左上角 \(i-j\)
    考虑构造函数 \(F_i = \sum_j A_{i-j} \cdot B_{j}\)
    \(F_i > 0\) 则该位置可达
    发现仍是多项式卷积形式,继续 \(NTT\) 即可

    \(\text{Code}\)

    #include <cstdio>
    #include <iostream>
    #define RE register
    #define IN inline
    using namespace std;
    typedef long long LL;
    
    const int N = 705, P = 998244353, g = 3;
    char str[N][N];
    int n, m, vis[N][N], x0 = N, y0 = N, x1 = 0, y1 = 0, rev[N * N * 2];
    int fx[4][2] = {{0, -1}, {-1, 0}, {1, 0}, {0, 1}};
    LL a[N * N * 2], b[N * N * 2];
    struct Point{int x, y;}Q[N * N];
    
    IN int Get(int x, int y){return (x - 1) * m + y - 1;}
    IN int get(int x, int y){return (x - x0) * m + y - y0;}
    IN int fpow(LL x, int y){LL s = 1; for(; y; y >>= 1, x = x * x % P) if (y & 1) s = s * x % P; return s;}
    IN void NTT(LL *a, int n, int inv)
    {
    	if (n == 1) return;
    	for(RE int i = 0; i < n; i++) if (i < rev[i]) swap(a[i], a[rev[i]]);
    	for(RE int mid = 1; mid < n; mid <<= 1)
    	{
    		int I = fpow(g, (P - 1) / (mid << 1));
    		if (inv == -1) I = fpow(I, P - 2);
    		for(RE int i = 0; i < n; i += (mid << 1))
    		{
    			LL W = 1;
    			for(RE int j = 0, x, y; j < mid; j++, W = W * I % P)
    				x = a[i + j], y = W * a[i + j + mid] % P,
    				a[i + j] = (x + y) % P, a[i + j + mid] = (x - y + P) % P;
    		}
    	}
    }
    void BFS()
    {
    	int head = 0, tail = 1; Q[1] = Point{x0, y0}, vis[x0][y0] = 0;
    	while (head < tail)
    	{
    		Point z = Q[++head]; a[Get(z.x, z.y)] = 1;
    		for(RE int k = 0; k < 4; k++)
    		{
    			int x = z.x + fx[k][0], y = z.y + fx[k][1];
    			if (x > 0 && x <= n && y > 0 && y <= m && vis[x][y]) vis[x][y] = 0, Q[++tail] = Point{x, y};
    		}
    	}
    }
    
    int main()
    {
    	freopen("sailing.in", "r", stdin), freopen("sailing.out", "w", stdout);
    	scanf("%d%d", &n, &m);
    	for(RE int i = 1; i <= n; i++) scanf("%s", str[i] + 1);
    	for(RE int i = 1; i <= n; i++)
    		for(RE int j = 1; j <= m; j++)
    		if (str[i][j] == 'o') x0 = min(x0, i), y0 = min(y0, j), x1 = max(x1, i), y1 = max(y1, j);
    		else if (str[i][j] == '#') a[n * m - 1 - Get(i, j)] = 1;
    	for(RE int i = 1; i <= n; i++)
    		for(RE int j = 1; j <= m; j++) if (str[i][j] == 'o') b[get(i, j)] = 1;
    	
    	int lim = 1; while (lim < n * m) lim <<= 1; int inv = fpow(lim, P - 2);
    	int bit = 0; while ((1 << bit) < lim) bit++;
    	for(RE int i = 0; i < lim; i++) rev[i] = (rev[i >> 1] >> 1) | ((i & 1) << (bit - 1));
    	
    	NTT(a, lim, 1), NTT(b, lim, 1);
    	for(RE int i = 0; i < lim; i++) a[i] = a[i] * b[i] % P;
    	NTT(a, lim, -1); for(RE int i = 0; i < lim; i++) a[i] = a[i] * inv % P;
    	
    	for(RE int i = 1; i <= n + x0 - x1; i++) 
    		for(RE int j = 1; j <= m + y0 - y1; j++)
    			if (!a[n * m - 1 - Get(i, j)]) vis[i][j] = 1;
    	
    	for(RE int i = 0; i < lim; i++) a[i] = 0;
    	BFS(), NTT(a, lim, 1);
    	for(RE int i = 0; i < lim; i++) a[i] = a[i] * b[i] % P;
    	NTT(a, lim, -1); for(RE int i = 0; i < lim; i++) a[i] = a[i] * inv % P;
    	
    	int ans = 0;
    	for(RE int i = 0; i < n * m; i++) if (a[i] > 0) ans++;
    	printf("%d\n", ans);
    }
    
  • 相关阅读:
    CSS的学习
    nodejs
    eureka注册中心
    netty的机制
    分布式事务
    spring cloud的基础
    一个发散动画的菜单控件(主要记录控件x,y坐标的运动状况)
    关于ViewPager高度自适应(随着pager页的高度改变Viewpager的高度)
    ViewPager的使用总结
    Android实现沉浸式状态栏(必须高逼格)
  • 原文地址:https://www.cnblogs.com/leiyuanze/p/15824230.html
Copyright © 2011-2022 走看看