zoukankan      html  css  js  c++  java
  • ACM HDU 1081 To The Max

    

    To The Max

    Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
    Total Submission(s): 10839    Accepted Submission(s): 5191


    Problem Description
    Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1 x 1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.

    As an example, the maximal sub-rectangle of the array:

    0 -2 -7 0
    9 2 -6 2
    -4 1 -4 1
    -1 8 0 -2

    is in the lower left corner:

    9 2
    -4 1
    -1 8

    and has a sum of 15.
     


    Input
    The input consists of an N x N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N 2 integers separated by whitespace (spaces and newlines). These are the N 2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
     


    Output
    Output the sum of the maximal sub-rectangle.
     


    Sample Input
    4 0 -2 -7 0 9 2 -6 2 -4 1 -4 1 -1 8 0 -2
     


    Sample Output
    15
     
    题目大意:给一个N*N的矩阵求解最大的子矩阵和
    解法:压缩数组+暴力(水过)
    源代码:
    <span style="font-size:18px;">#include<iostream>
    #include<stdio.h>
    #include<stdlib.h>
    #include<string>
    #include<string.h>
    #include<math.h>
    #include<map>
    #include<vector>
    #include<algorithm>
    #include<queue>
    using namespace std;
    #define MAX 0x3f3f3f3f
    #define MIN -0x3f3f3f3f
    #define PI 3.14159265358979323
    #define N 105
    int n;
    int ans[N][N];
    int value(int x, int y)
    {
    	int sum;
    	int i, j;
    	sum = 0;
    	for (i = 1; i <= n; i++)
    	{
    		for (j = 1; j <= n; j++)
    		{
    			if (i >= x&&j >= y)
    				sum = max(sum, ans[i][j] + ans[i - x][j - y] - ans[i - x][j] - ans[i][j - y]);
    			if (i >= y&&j >= x)
    				sum = max(sum, ans[i][j] + ans[i - y][j - x] - ans[i - y][j] - ans[i][j - x]);
    		}
    	}
    	return sum;
    }
    int main()
    {
    	int i, j;
    	int result;
    	int num;
    	int temp;
    	while (scanf("%d", &n) != EOF)
    	{
    		memset(ans, 0, sizeof(ans));
    		for (i = 1; i <= n; i++)
    		{
    			for (j = 1; j <= n; j++)
    			{
    				scanf("%d", &num);
    				ans[i][j] = ans[i - 1][j] + ans[i][j - 1] - ans[i - 1][j - 1] + num;
    			}
    		}
    		result = 0;
    		for (i = 1; i <= n; i++)
    		{
    			for (j = i; j <= n; j++)
    			{
    				temp = value(i, j);
    				if (temp > result)
    					result = temp;
    			}
    		}
    		printf("%d
    ", result);
    	}
    	return 0;
    }</span>


  • 相关阅读:
    js对象排序
    路由懒加载优化
    RabbitMQ---1、安装与部署
    RabbitMQ入门教程系列
    c#项目代码风格要求
    C#RabbitMQ基础学习笔记
    C# 协变和逆变
    获取当前系统的基本信息
    html制作chm格式开源文档
    WPF: RenderTransform特效
  • 原文地址:https://www.cnblogs.com/lemonbiscuit/p/7776137.html
Copyright © 2011-2022 走看看