zoukankan      html  css  js  c++  java
  • 笔试算法题(58):二分查找树性能分析(Binary Search Tree Performance Analysis)

    议题:二分查找树性能分析(Binary Search Tree Performance Analysis)

    分析:

    • 二叉搜索树(Binary Search Tree,BST)是一颗典型的二叉树,同时任何节点的键值大于等于该节点左子树中的所有键值,小于等于该节点右子树中的所有键值,并且每个节点域中保存 一个记录以其为根节点的子树中所有节点个数的属性,这个属性可用于支持贪婪算法的实现;

    • 二叉搜索树的建立是在树的底部添加新的元素,搜索即从根元素开始到达树底部的一条路径,插入和搜索相似(注意对重复键的处理),排序按照节点访问方式不同有前序、中序、后序三种;

    • 二叉搜索树算法的运行时间取决于树的形状,最好情况下根节点与每个外部节点间有㏒N个节点,此时树完全平衡,最坏情况下搜索路径上有N个节点。由于创建二 叉搜索树的时候,第一个插入的元素总是作为根元素,所以元素插入的顺序决定树的形状。在随机情况下,极度平衡和极度不平衡的树都很少出现,所以这种情况下 二叉搜索树算法有着良好的运行情况;

    • 所以平均情况下,N个随机生成的BST树种,一次搜索,插入大约需要1.39㏒N此比较。如果键值不是随机出现,则二叉搜索树退化为N个节点的链表,一次操作为线性O(N)运行时间;

    • 使用BST树存储文件中每一个文本串,基于字符串的排序使得搜索变得容易;

    • BottomUp插入策略:按照前序策略遍历整个树结构,首先查看当前节点是否为NULL,然后与关键值比较查看是否为目标值,不是的话就分别针对左右子 树递归调用搜索算法,然后进入下一个结构,注意在递归调用之间的衔接是由返回一个节点来实现的,所以如果已经到达树底部,则返回一个新节点,这个节点正好 位于上一级的子树连接上,这样正好形成整个树结构;

    • TopDown插入策略:在BottomUp插入策略的基础上,将新插入的节点在递归回溯的时候逐层旋转,知道根节点的位置;使用基于递归插入操作和旋转 操作的策略可以使得最近插入的元素接近BST树的顶部,同时保持树的平衡性。这种插入方式称为从根部插入,实现策略:首先使用普通递归插入将在树底部找到 一个合适的位置插入新的节点,然后使用旋转操作将这个新加入的节点旋转到根节点处,不仅可以保持树的平衡,而且由于最近插入的项被使用的概率大,靠近根节 点则加速搜索效率;

    • 旋转操作:BST树中从根部插入新节点:首要考虑的就是是否能够保持BST树的性质。现在使用基于旋转(Rotation)的转换策略,使得BST树保持原有性质。旋转实质上是交换根节点和一个孩子的角色,同时保持各节点的顺序

       

    • 选择第Kth个值(最小或者最大):利用Node节点中的count标记(此标记说明以当前节点为根节点的子树的所有节点数),可以快速查找给定的序列中 第Kth个最小或者最大值;当然前提是将给定的序列扩建成BST;从根节点开始,首先检查其左子树中节点个数,如果正好为K个则返回根节点本身,如果大于 K个节点,则对左子树递归调用算法,如果小于K个节点,则说明第K个最小键在根节点的右子树中,变成查找右子树中第K-t-1个最小键的项(t为左子树所 有节点,1为根节点自身);

    • BST树的节点删除操作:被删除的节点可以有三种情况,没有子节点,有一个子节点,有两个子节点。第一种情况可直接删除;第二种情况需要临时存储子节点的 索引,并让被删除节点的父节点指向这个这个索引;第三种情况需要维护BST树的性质,所以一般性策略是选择右子树中最小的元素作为新的根节点(右子树中最 小的元素出现在最左边,所以它至多只有一个子节点,可容易删除),然而有时候也会选择左子树中的最大元素作为新的根节点(由于在左右子树中任意选择新的节 点作为新的根节点,所以可能造成BST树的不平衡);

    样例:

      1 struct Node {
      2         int value;
      3         int count;
      4         Node *left;
      5         Node *right;
      6         Node(int v, int c=1, Node* l=NULL, Node* r=NULL):
      7                                 count(c), value(v), left(l), right(r) {
      8 
      9         }
     10 };
     11 /**
     12  * 对root节点进行右旋转操作,也就是:
     13  * 1. 让root原来的左孩子变成newRoot;
     14  * 2. 让root变成newRoot的右子节点;
     15  * 3. 让root原来的左孩子的的右子节点变成root的左子节点
     16  * */
     17 Node* rightRotate(Node *root) {
     18         Node *newRoot=root->left;
     19         root->left=root->left->right;
     20         newRoot->right=root;
     21         return newRoot;
     22 }
     23 /**
     24  * 对root节点进行左旋转操作,也就是:
     25  * 1. 让root原来的右孩子变成newRoot;
     26  * 2. 让root变成newRoot的左子节点;
     27  * 3. 让root原来的右孩子的左子节点变成root的右子节点
     28  * */
     29 Node* leftRotate(Node *root) {
     30         Node *newRoot=root->right;
     31         root->right=root->right->left;
     32         newRoot->left=root;
     33         return newRoot;
     34 }
     35 
     36 Node* binaryTreeSearch(Node *root, int target) {
     37 
     38         if(root==NULL)
     39                 return NULL;
     40 
     41         if(target>root->value)
     42                 return binaryTreeSearch(root->right, target);
     43         else if(target<root->value)
     44                 return binaryTreeSearch(root->left, target);
     45         else
     46                 return root;
     47 }
     48 
     49 Node* binaryTreeInsert(Node *root, int target) {
     50 
     51         if(root==NULL) {
     52                 return new Node(target);
     53         }
     54 
     55         if(target>root->value)
     56                 root->right=binaryTreeInsert(root->right, target);
     57         else if(target<root->value)
     58                 root->left=binaryTreeInsert(root->left, target);
     59 
     60         return root;
     61 }
     62 /**
     63  * 这样可以将新插入的元素旋转到为root;
     64  * 不仅可以保持BST的平衡性,而且可以保证
     65  * 新插入的元素的最大访问延迟;
     66  * */
     67 Node* binaryTreeInsertTopDown(Node *root, int target) {
     68 
     69         if(root==NULL) {
     70                 return new Node(target);
     71         }
     72 
     73         if(target>root->value) {
     74                 root->right=binaryTreeInsert(root->right, target);
     75                 root=leftRotate(root);
     76         }
     77         else if(target<root->value) {
     78                 root->left=binaryTreeInsert(root->left, target);
     79                 root=rightRotate(root);
     80         }
     81 
     82         return root;
     83 }
     84 
     85 Node* binaryTreeInsertWithCount(Node *root, int target) {
     86 
     87         if(root==NULL) {
     88                 return new Node(target);
     89         }
     90 
     91         if(target>root->value)
     92                 root->right=binaryTreeInsert(root->right, target);
     93         else if(target<root->value)
     94                 root->left=binaryTreeInsert(root->left, target);
     95         root->count++;
     96         return root;
     97 }
     98 /**
     99  * 从一个序列中选定第K大的数字,
    100  * */
    101 int binaryTreeSelect(Node *root, int k) {
    102         /**
    103          * 如果当前root为NULL,则选择失败
    104          * */
    105         if(root==NULL) {
    106                 printf("
    find nothing-_-
    ");
    107                 return -1;
    108         }
    109         /**
    110          * 如果root的左子节点为NULL
    111          * */
    112         if(root->left==NULL) {
    113                 if(k==1)
    114                         return root->value;
    115                 return binaryTreeSelect(root->right, k-1);
    116         }
    117         /**
    118          * 如果root的左子节点不为NULL;
    119          * 1. 如果K<=leftCount,则Kth个节点在左子树中
    120          * 2. 如果K==leftCount+1,则kth个节点就是root自身
    121          * 3. 如果k>leftCount+1,则Kth个节点就是右子树中的k-1-leftCount个节点
    122          * */
    123         int leftCount=root->left->count;
    124         if(leftCount>=k)
    125                 return binaryTreeSelect(root->left, k);
    126         else if(leftCount+1==k)
    127                 return root->value;
    128         else
    129                 return binaryTreeSelect(root->right, k-1-leftCount);
    130 }
    131 
    132 /**
    133  * 将指定的元素target旋转到根节点
    134  * */
    135 Node* binaryTreeRotate(Node *root, int target) {
    136 
    137         if(root==NULL)
    138                 return NULL;
    139 
    140         if(target>root->value) {
    141                 root->right=binaryTreeRotate(root->right,target);
    142                 leftRotate(root);
    143         } else if(target<root->value) {
    144                 root->left=binaryTreeRotate(root->left,target);
    145                 rightRotate(root);
    146         }
    147 
    148         return root;
    149 }
    150 /**
    151  * 此方法寻找root的左子树中具有最大value的子节点,也就是最‘左边’的子节点;
    152  * */
    153 Node* subtreeRightMaximum(Node *root) {
    154         Node *cur=root;
    155         Node *pre;
    156         while(cur!=NULL) {
    157                 pre=cur;
    158                 cur=cur->left;
    159         }
    160         return pre;
    161 }
    162 /**
    163  * 此方法寻找root的右子树中具有最大value的子节点,也就是最‘左边’的子节点;
    164  * */
    165 Node* subTreeLeftMaximum(Node* root) {
    166         Node *cur=root;
    167         Node *pre;
    168         while(cur!=NULL) {
    169                 pre=cur;
    170                 cur=cur->right;
    171         }
    172         return pre;
    173 }
    174 
    175 Node* binaryTreeDelete(Node *root, int target) {
    176 
    177         if(root==NULL)
    178                 return NULL;
    179         Node *temp;
    180         Node *newRoot;
    181         /**
    182          * 如果target比root->value大,则说明其位于root的
    183          * 右子树,则继续递归
    184          * 如果target比root->value小,则说明其位于root的
    185          * 左子树,则继续递归
    186          * 如果target等于root->value,则说明当前节点root
    187          * 就是需要删除的节点,然后分三种情况讨论:
    188          * 1. 如果root没有左右子节点
    189          * 2. 如果root只有左节点或者只有右节点
    190          * 3. 如果root德尔左右子节点都存在;
    191          * */
    192         if(target>root->value)
    193                 root->right=binaryTreeDelete(root->right, target);
    194         else if(target<root->value)
    195                 root->left=binaryTreeDelete(root->left, target);
    196         else {
    197                 if(root->left==NULL && root->right) {
    198                         delete root;
    199                         return NULL;
    200                 } else if(root->left==NULL) {
    201                         temp=root->right;
    202                         delete root;
    203                         return temp;
    204                 } else if(root->right==NULL) {
    205                         temp=root->left;
    206                         delete root;
    207                         return temp;
    208                 }
    209                 /**
    210                  * 左右子节点都存在的情况,需要从左右子树中寻找下一个根节点;
    211                  * 这里是从右子树中选取最小的一个节点作为新的根节点;
    212                  * */
    213                 newRoot=subtreeRightMaximum(root->right);
    214                 /**
    215                  * 由于右子树中最小的节点必然至多只有一个右节点,所以其删除操作
    216                  * 较为简单;然后将其的左右子树替换成当前的左右子树;
    217                  * */
    218                 newRoot=binaryTreeDelete(root->right, newRoot->value);
    219                 newRoot->right=root->right;
    220                 newRoot->left=root->left;
    221                 delete root;
    222         }
    223 
    224 }

    补充:

    • BST中搜索和插入的策略都是一样的,从传入的树节点开始,首先判断其是否为NULL,如果是的话对于搜索来讲表示失败,对于插入来讲表示需要插入新的节 点;如果不是NULL的话,对于搜索来讲比对是否为目标值,然后针对左右子树递归调用,对于插入来讲比对是否相同,表示树中已经有同样的节点算法说明;

    • BST树的构建和搜索也使用同样的遍历策略,所以插入与搜索一样容易实现;旋转可用于防止树变得不平衡,实现删除,合并和其他操作的辅助操作,BST树的 插入操作可以通过在树的底部插入新元素,然后使用左旋和右旋将新元素带到根节点处,防止树的不平衡状态。每次BST搜索命中的项也可以通过旋转带到根节点 处;

    • 使用BST树进行选择算法最大的缺点就是计数域的出现导致额外的内存占用,树结构改变时需要额外的维护操作,同时我们可以对查找到的节点元素使用旋转操作,将其放到根节点的位置,下次使用的时候就能很快定位;


    BST树的性能特征总结:

    • 二叉搜索树算法的运行时间取决于树的形状,最好情况下树可能完全平衡,这样一次搜索过程就是一条路径的长度㏒N,最差情况下树退化为链表,这样一次搜索过程路径长度可能为N;

    • 使用插入操作构建BST树的过程中,越是前面的节点对树最终形状的影响越是大,第一个元素就是树根,对于随机序列来讲,最坏情况出现的概率很小,所以平均情况能保持较好的运行时间,㏒N;

    • 使用索引项来表示搜索节点,避免动态分配内存。当序列以随机序列插入时,生成完全平衡树的概率很小,但二叉树路径的长度和树的高度与BST的搜索开销联系 紧密。平均情况下一棵根据N个随机键生成的BST树中,搜索命中(插入和搜索失败)大约需要1.39㏒N次比较。最坏情况下,可能需要N此比较(也就是顺 序搜索);

  • 相关阅读:
    第四周助教小结
    java课程总结
    第十四周总结
    第十三周实验报告
    第十二周课程报告
    第十一周课程总结
    第十周课程总结
    第九周课程总结&实验报告(七)
    第八周课程总结&实验报告(六)
    第七周课程总结&实验报告(五)
  • 原文地址:https://www.cnblogs.com/leo-chen-2014/p/3762132.html
Copyright © 2011-2022 走看看