zoukankan      html  css  js  c++  java
  • caffe学习--cifar10学习-ubuntu16.04-gtx650tiboost--1g--01

    引用了下文的资料,在此感谢!

    http://www.cnblogs.com/alexcai/p/5468164.html

    http://blog.csdn.net/garfielder007/article/details/51480844

     

     

    第一、cifar数据集的知识

     

    The CIFAR-10 dataset

    The CIFAR-10 dataset consists of 60000 32x32 colour images in 10 classes, with 6000 images per class. There are 50000 training images and 10000 test images. 

    The dataset is divided into five training batches and one test batch, each with 10000 images. The test batch contains exactly 1000 randomly-selected images from each class. The training batches contain the remaining images in random order, but some training batches may contain more images from one class than another. Between them, the training batches contain exactly 5000 images from each class. 

    Here are the classes in the dataset, as well as 10 random images from each:

    airplane
    automobile
    bird
    cat
    deer
    dog
    frog
    horse
    ship
    truck


    The classes are completely mutually exclusive. There is no overlap between automobiles and trucks. "Automobile" includes sedans, SUVs, things of that sort. "Truck" includes only big trucks. Neither includes pickup trucks.

    Download

    If you're going to use this dataset, please cite the tech report at the bottom of this page. 

    Version Size md5sum
    CIFAR-10 python version 163 MB c58f30108f718f92721af3b95e74349a
    CIFAR-10 Matlab version 175 MB 70270af85842c9e89bb428ec9976c926
    CIFAR-10 binary version (suitable for C programs) 162 MB c32a1d4ab5d03f1284b67883e8d87530

     

    Baseline results

    You can find some baseline replicable results on this dataset on the project page for cuda-convnet. These results were obtained with a convolutional neural network. Briefly, they are 18% test error without data augmentation and 11% with. Additionally, Jasper Snoek has a new paper in which he used Bayesian hyperparameter optimization to find nice settings of the weight decay and other hyperparameters, which allowed him to obtain a test error rate of 15% (without data augmentation) using the architecture of the net that got 18%.

    Other results

    Rodrigo Benenson has been kind enough to collect results on CIFAR-10/100 and other datasets on his website; click here to view.

    Dataset layout

     

    Python / Matlab versions

    I will describe the layout of the Python version of the dataset. The layout of the Matlab version is identical. 

    The archive contains the files data_batch_1, data_batch_2, ..., data_batch_5, as well as test_batch. Each of these files is a Python "pickled" object produced with cPickle. Here is a Python routine which will open such a file and return a dictionary:

    def unpickle(file):
        import cPickle
        fo = open(file, 'rb')
        dict = cPickle.load(fo)
        fo.close()
        return dict
    

    Loaded in this way, each of the batch files contains a dictionary with the following elements:

    • data -- a 10000x3072 numpy array of uint8s. Each row of the array stores a 32x32 colour image. The first 1024 entries contain the red channel values, the next 1024 the green, and the final 1024 the blue. The image is stored in row-major order, so that the first 32 entries of the array are the red channel values of the first row of the image.
    • labels -- a list of 10000 numbers in the range 0-9. The number at index i indicates the label of the ith image in the array data.


    The dataset contains another file, called batches.meta. It too contains a Python dictionary object. It has the following entries:

    • label_names -- a 10-element list which gives meaningful names to the numeric labels in the labels array described above. For example, label_names[0] == "airplane",label_names[1] == "automobile", etc.

     

    Binary version

    The binary version contains the files data_batch_1.bin, data_batch_2.bin, ..., data_batch_5.bin, as well as test_batch.bin. Each of these files is formatted as follows:

    <1 x label><3072 x pixel>
    ...
    <1 x label><3072 x pixel>

    In other words, the first byte is the label of the first image, which is a number in the range 0-9. The next 3072 bytes are the values of the pixels of the image. The first 1024 bytes are the red channel values, the next 1024 the green, and the final 1024 the blue. The values are stored in row-major order, so the first 32 bytes are the red channel values of the first row of the image. 

    Each file contains 10000 such 3073-byte "rows" of images, although there is nothing delimiting the rows. Therefore each file should be exactly 30730000 bytes long. 

    There is another file, called batches.meta.txt. This is an ASCII file that maps numeric labels in the range 0-9 to meaningful class names. It is merely a list of the 10 class names, one per row. The class name on row i corresponds to numeric label i.

    The CIFAR-100 dataset

    This dataset is just like the CIFAR-10, except it has 100 classes containing 600 images each. There are 500 training images and 100 testing images per class. The 100 classes in the CIFAR-100 are grouped into 20 superclasses. Each image comes with a "fine" label (the class to which it belongs) and a "coarse" label (the superclass to which it belongs).
    Here is the list of classes in the CIFAR-100:

    Superclass Classes
    aquatic mammals beaver, dolphin, otter, seal, whale
    fish aquarium fish, flatfish, ray, shark, trout
    flowers orchids, poppies, roses, sunflowers, tulips
    food containers bottles, bowls, cans, cups, plates
    fruit and vegetables apples, mushrooms, oranges, pears, sweet peppers
    household electrical devices clock, computer keyboard, lamp, telephone, television
    household furniture bed, chair, couch, table, wardrobe
    insects bee, beetle, butterfly, caterpillar, cockroach
    large carnivores bear, leopard, lion, tiger, wolf
    large man-made outdoor things bridge, castle, house, road, skyscraper
    large natural outdoor scenes cloud, forest, mountain, plain, sea
    large omnivores and herbivores camel, cattle, chimpanzee, elephant, kangaroo
    medium-sized mammals fox, porcupine, possum, raccoon, skunk
    non-insect invertebrates crab, lobster, snail, spider, worm
    people baby, boy, girl, man, woman
    reptiles crocodile, dinosaur, lizard, snake, turtle
    small mammals hamster, mouse, rabbit, shrew, squirrel
    trees maple, oak, palm, pine, willow
    vehicles 1 bicycle, bus, motorcycle, pickup truck, train
    vehicles 2 lawn-mower, rocket, streetcar, tank, tractor


    Yes, I know mushrooms aren't really fruit or vegetables and bears aren't really carnivores. 

    Download

     

    Version Size md5sum
    CIFAR-100 python version 161 MB eb9058c3a382ffc7106e4002c42a8d85
    CIFAR-100 Matlab version 175 MB 6a4bfa1dcd5c9453dda6bb54194911f4
    CIFAR-100 binary version (suitable for C programs) 161 MB 03b5dce01913d631647c71ecec9e9cb8

     

    Dataset layout

     

    Python / Matlab versions

    The python and Matlab versions are identical in layout to the CIFAR-10, so I won't waste space describing them here.

    Binary version

    The binary version of the CIFAR-100 is just like the binary version of the CIFAR-10, except that each image has two label bytes (coarse and fine) and 3072 pixel bytes, so the binary files look like this:

    <1 x coarse label><1 x fine label><3072 x pixel>
    ...
    <1 x coarse label><1 x fine label><3072 x pixel>

     

    Indices into the original 80 million tiny images dataset

    Sivan Sabato was kind enough to provide this file, which maps CIFAR-100 images to images in the 80 million tiny images dataset. Sivan Writes:

    The file has 60000 rows, each row contains a single index into the tiny db,
    where the first image in the tiny db is indexed "1". "0" stands for an image that is not from the tiny db.
    The first 50000 lines correspond to the training set, and the last 10000 lines correspond
    to the test set.
    

     

    Reference

    This tech report (Chapter 3) describes the dataset and the methodology followed when collecting it in much greater detail. Please cite it if you intend to use this dataset. 

     

    from: http://www.cs.toronto.edu/~kriz/cifar.html

     

     

    第二、caffe的知识

     

    简介

    caffe是一个友好、易于上手的开源深度学习平台,主要用于图像的相关处理,可以支持CNN等多种深度学习网络。

    基于caffe,开发者可以方便快速地开发简单的学习网络,用于分类、定位等任务,也可以用于科研,在其源码基础上进行修改,实现自己的算法。

    本文的主要目的,是介绍caffe的基本使用方法,希望通过本文,能让普通的工程师可以使用caffe训练自己的简单模型。

    本文主要包括以下内容:运行caffe的例子训练cifar训练集、使用别人定义好的网络训练自己的数据、使用训练好的模型fine tune自己的数据。

     背景知识简介

    深度学习是机器学习的一个分支,主要目标在于通过学习的方法,解决以往普通编程无法解决的问题,例如:图像识别、文字识别等等。

    机器学习里的“学习”,指通过向程序输入经验数据,通过若干次“迭代”,不断改进算法参数,最终能够获得“模型”,使用新数据输入模型,计算得出想要的结果。

    例如图像分类任务中,经验数据是图片和对应的文字,训练出模型后,将新图片使用模型运算,就可以知道其对应的类别。

    以上只是简单介绍,这里还是建议先学习机器学习、卷积神经网络的相关基础知识。

    安装

    这一部分网上有不少教程,这里就略掉,另外,我是用docker的镜像直接安装的,网上可以直接搜到带caffe的docker镜像。好处是省去安装环境的时间,缺点是后面设置文件会麻烦一些,建议从长计议还是直接安装在电脑上。

    make runtest
    
    
    [       OK ] AdaDeltaSolverTest/2.TestLeastSquaresUpdateWithEverythingAccumShare (6 ms)
    [ RUN      ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithEverythingShare
    [       OK ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithEverythingShare (61 ms)
    [ RUN      ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithHalfMomentum
    [       OK ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithHalfMomentum (21 ms)
    [ RUN      ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithWeightDecay
    [       OK ] AdaDeltaSolverTest/2.TestAdaDeltaLeastSquaresUpdateWithWeightDecay (10 ms)
    [----------] 11 tests from AdaDeltaSolverTest/2 (324 ms total)
    
    [----------] Global test environment tear-down
    [==========] 2101 tests from 277 test cases ran. (435790 ms total)
    [  PASSED  ] 2101 tests.
    [100%] Built target runtest

     训练cifar训练集

    cifar是一个常见的图像分类训练集,包括上万张图片及20个分类,caffe提供了一个网络用于分类cifar数据集。

    cifar网络的定义在examples/cifar10目录下,训练的过程十分简单。

    (以下命令均在caffe默认根目录下运行,下同)

     1、获取训练数据

    cd $CAFFE_ROOT
    ./data/cifar10/get_cifar10.sh
    ./examples/cifar10/create_cifar10.sh

     

    2、开始训练

    cd $CAFFE_ROOT
    ./examples/cifar10/train_quick.sh

    3、训练完成后我们会得到:

      cifar10_quick_iter_4000.caffemodel.h5

      cifar10_quick_iter_4000.solverstate.h5

      此时,我们就训练得到了模型,用于后面的分类。

    4、下面我们使用模型来分类新数据

    先直接用一下别人的模型分类试一下:(默认用的ImageNet的模型)

    python python/classify.py examples/images/cat.jpg foo

     这样会生成一个名为foo.npy的输出文件,记录了所有的类型的“相似度”。使用以下语句可以读出:

    import numpy as np
    f=file("foo.npy", "rb")
    print np.load(f)

    下面我们来指定自己的模型进行分类:

    python python/classify.py --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 --center_only  examples/images/cat.jpg foo

    上面这句话的意思是,使用cifar10_quick.prototxt网络 + cifar10_quick_iter_5000.caffemodel.h5模型,对examples/images/cat.jpg图片进行分类。

    默认的classify脚本不会直接输出结果,而是会把结果输入到foo文件里,不太直观,这里我在网上找了一个修改版,添加了一些参数,可以输出概率最高的分类。

    替换python/classify.py,下载地址:http://download.csdn.net/detail/caisenchuan/9513196    (这个要积分的,不推荐。  )

    实际上就是将对应内容改为

    159     # Classify.
    160     start = time.time()
    161     predictions = classifier.predict(inputs, not args.center_only)
    162     print("Done in %.2f s." % (time.time() - start))
    163     print("Predictions : %s" % predictions)
    164
    165     # print result, add by caisenchuan
    166     if args.print_results:
    167         scores = predictions.flatten()
    168         with open(args.labels_file) as f:
    169             labels_df = pd.DataFrame([
    170                     {
    171                         'synset_id': l.strip().split(' ')[0],
    172                         'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
    173                     }
    174                     for l in f.readlines()
    175                 ])
    176             labels = labels_df.sort('synset_id')['name'].values
    177
    178             indices = (-scores).argsort()[:5]
    179             ps = labels[indices]
    180
    181             meta = [
    182                 (p, '%.5f' % scores[i])
    183                 for i, p in zip(indices, ps)
    184             ]
    185
    186             print meta
    187
    188     # Save
    189     print("Saving results into %s" % args.output_file)
    190     np.save(args.output_file, predictions)

    这个脚本添加了两个参数,可以指定labels_file,然后可以直接把分类结果输出出来:

    python python/classify.py --print_results --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 --labels_file data/cifar10/cifar10_words.txt  --center_only  examples/images/cat.jpg foo

    输出结果:

    复制代码
    Loading file: examples/images/cat.jpg
    Classifying 1 inputs.
    predict 3 inputs.
    Done in 0.02 s.
    Predictions : [[ 0.03903743  0.00722749  0.04582177  0.44352672  0.01203315  0.11832549
       0.02335102  0.25013766  0.03541689  0.02512246]]
    python/classify.py:176: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
      labels = labels_df.sort('synset_id')['name'].values
    [('cat', '0.44353'), ('horse', '0.25014'), ('dog', '0.11833'), ('bird', '0.04582'), ('airplane', '0.03904')]
    上面标明了各个分类的顺序和置信度
    Saving results into foo
    复制代码

    Tips

    最后,总结一下训练一个网络用到的相关文件:

    cifar10_quick_solver.prototxt:方案配置,用于配置迭代次数等信息,训练时直接调用caffe train指定这个文件,就会开始训练

    cifar10_quick_train_test.prototxt:训练网络配置,用来设置训练用的网络,这个文件的名字会在solver.prototxt里指定

    cifar10_quick_iter_4000.caffemodel.h5:训练出来的模型,后面就用这个模型来做分类

    cifar10_quick_iter_4000.solverstate.h5:也是训练出来的,应该是用来中断后继续训练用的文件

    cifar10_quick.prototxt:分类用的网络

     

    //--------------------------------------------------------------------------------------------------------------------------------------------------------

    需要说明的是:期间曾遇到这个错误,用下面的方法终于搞定。当然,需要重新编译caffe。

    macOS Sierra (10.12.4)下Caffe执行Python代码报告错误“Mean shape incompatible with input shape”

    在执行 macOS Sierra (10.12.4)下Caffe通过Python接口加载binaryproto格式的均值文件 的时候,最后报告错误:

    Traceback (mostrecentcall last):
      File "analysis_memnet.py", line 29, in <module>
        detector = caffe.Detector(model_def, pretrained_model, mean=means)
      File "/Users/Source/caffe/distribute/python/caffe/detector.py", line 46, in __init__
        self.transformer.set_mean(in_, mean)
      File "/Users/Source/caffe/distribute/python/caffe/io.py", line 259, in set_mean
        raiseValueError('Mean shape incompatible with input shape.')
    ValueError: Meanshapeincompatiblewithinputshape.
    

    这个错误发生的原因是由于 memnet 提供的均值文件是 256 * 256 的,但是提供的配置文件却是 227 * 227 的,导致在 io .py 里面的代码在进行判断的时候发生异常。调整源代码中的 python /caffe / io .py 里面的代码:

        def set_mean(self, in_, mean):
            """
            Set the mean to subtract for centering the data.
     
            Parameters
            ----------
            in_ : which input to assign this mean.
            mean : mean ndarray (input dimensional or broadcastable)
            """
            self.__check_input(in_)
            ms = mean.shape
            if mean.ndim == 1:
                # broadcast channels
                if ms[0] != self.inputs[in_][1]:
                    raise ValueError('Mean channels incompatible with input.')
                mean = mean[:, np.newaxis, np.newaxis]
            else:
                # elementwise mean
                if len(ms) == 2:
                    ms = (1,) + ms
                if len(ms) != 3:
                    raise ValueError('Mean shape invalid')
                if ms != self.inputs[in_][1:]:
                    raise ValueError('Mean shape incompatible with input shape.')
            self.mean[in_] = mean
    

    调整为:

        def set_mean(self, in_, mean):
            """
            Set the mean to subtract for centering the data.
     
            Parameters
            ----------
            in_ : which input to assign this mean.
            mean : mean ndarray (input dimensional or broadcastable)
            """
            self.__check_input(in_)
            ms = mean.shape
            if mean.ndim == 1:
                # broadcast channels
                if ms[0] != self.inputs[in_][1]:
                    raise ValueError('Mean channels incompatible with input.')
                mean = mean[:, np.newaxis, np.newaxis]
            else:
                # elementwise mean
                if len(ms) == 2:
                    ms = (1,) + ms
                if len(ms) != 3:
                    raise ValueError('Mean shape invalid')
                if ms != self.inputs[in_][1:]:
                    in_shape = self.inputs[in_][1:]
                    m_min, m_max = mean.min(), mean.max()
                    normal_mean = (mean - m_min) / (m_max - m_min)
                    mean = resize_image(normal_mean.transpose((1,2,0)),in_shape[1:]).transpose((2,0,1)) * (m_max - m_min) + m_min
                    #raise ValueError('Mean shape incompatible with input shape.')
            self.mean[in_] = mean
    

    调整完成后,需要重新编译 Caffe :

    $ make clean
    $ make
    $ make pycaffe
    $ make distribute
    

    参考链接

    附录: 

    python/classify.py:

    #!/usr/bin/env python
    """
    classify.py is an out-of-the-box image classifer callable from the command line.
    
    By default it configures and runs the Caffe reference ImageNet model.
    """
    import numpy as np
    import os
    import sys
    import argparse
    import glob
    import time
    
    import pandas as pd
    from skimage.color import rgb2gray
    
    import caffe
    
    
    def main(argv):
        pycaffe_dir = os.path.dirname(__file__)
    
        parser = argparse.ArgumentParser()
        # Required arguments: input and output files.
        parser.add_argument(
            "input_file",
            help="Input image, directory, or npy."
        )
        parser.add_argument(
            "output_file",
            help="Output npy filename."
        )
        # Optional arguments.
        parser.add_argument(
            "--model_def",
            default=os.path.join(pycaffe_dir,
                    "../models/bvlc_reference_caffenet/deploy.prototxt"),
            help="Model definition file."
        )
        parser.add_argument(
            "--pretrained_model",
            default=os.path.join(pycaffe_dir,
                    "../models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel"),
            help="Trained model weights file."
        )
        parser.add_argument(
            "--gpu",
            action='store_true',
            help="Switch for gpu computation."
        )
        parser.add_argument(
            "--center_only",
            action='store_true',
            help="Switch for prediction from center crop alone instead of " +
                 "averaging predictions across crops (default)."
        )
        parser.add_argument(
            "--images_dim",
            default='256,256',
            help="Canonical 'height,width' dimensions of input images."
        )
        parser.add_argument(
            "--mean_file",
            default=os.path.join(pycaffe_dir,
                                 'caffe/imagenet/ilsvrc_2012_mean.npy'),
            help="Data set image mean of [Channels x Height x Width] dimensions " +
                 "(numpy array). Set to '' for no mean subtraction."
        )
        parser.add_argument(
            "--input_scale",
            type=float,
            help="Multiply input features by this scale to finish preprocessing."
        )
        parser.add_argument(
            "--raw_scale",
            type=float,
            default=255.0,
            help="Multiply raw input by this scale before preprocessing."
        )
        parser.add_argument(
            "--channel_swap",
            default='2,1,0',
            help="Order to permute input channels. The default converts " +
                 "RGB -> BGR since BGR is the Caffe default by way of OpenCV."
        )
        parser.add_argument(
            "--ext",
            default='jpg',
            help="Image file extension to take as input when a directory " +
                 "is given as the input file."
        )
        
        # add by caisenchuan
        parser.add_argument(
            "--labels_file",
            default=os.path.join(pycaffe_dir,
                    "../data/ilsvrc12/synset_words.txt"),
            help="Readable label definition file."
        )
        parser.add_argument(
            "--print_results",
            action='store_true',
            help="Write output text to stdout rather than serializing to a file."
        )
        parser.add_argument(
            "--force_grayscale",
            action='store_true',
            help="Converts RGB images down to single-channel grayscale versions," +
                 "useful for single-channel networks like MNIST."
        )
        
        args = parser.parse_args()
    
        image_dims = [int(s) for s in args.images_dim.split(',')]
    
        mean, channel_swap = None, None
        
        # add by caisenchuan
        if args.force_grayscale:
          channel_swap = None
          mean = None
        else:
            if args.mean_file:
                mean = np.load(args.mean_file)
            if args.channel_swap:
                channel_swap = [int(s) for s in args.channel_swap.split(',')]
        
        if args.gpu:
            caffe.set_mode_gpu()
            print("GPU mode")
        else:
            caffe.set_mode_cpu()
            print("CPU mode")
    
        # Make classifier.
        classifier = caffe.Classifier(args.model_def, args.pretrained_model,
                image_dims=image_dims, mean=mean,
                input_scale=args.input_scale, raw_scale=args.raw_scale,
                channel_swap=channel_swap)
    
        # Load numpy array (.npy), directory glob (*.jpg), or image file.
        args.input_file = os.path.expanduser(args.input_file)
        if args.input_file.endswith('npy'):
            print("Loading file: %s" % args.input_file)
            inputs = np.load(args.input_file)
        elif os.path.isdir(args.input_file):
            print("Loading folder: %s" % args.input_file)
            inputs =[caffe.io.load_image(im_f)
                     for im_f in glob.glob(args.input_file + '/*.' + args.ext)]
        else:
            print("Loading file: %s" % args.input_file)
            inputs = [caffe.io.load_image(args.input_file)]
        
        if args.force_grayscale:
          inputs = [rgb2gray(input) for input in inputs];
        
        print("Classifying %d inputs." % len(inputs))
    
        # Classify.
        start = time.time()
        predictions = classifier.predict(inputs, not args.center_only)
        print("Done in %.2f s." % (time.time() - start))
        print("Predictions : %s" % predictions)
    
        # print result, add by caisenchuan
        if args.print_results:
            scores = predictions.flatten()
            with open(args.labels_file) as f:
                labels_df = pd.DataFrame([
                        {
                            'synset_id': l.strip().split(' ')[0],
                            'name': ' '.join(l.strip().split(' ')[1:]).split(',')[0]
                        }
                        for l in f.readlines()
                    ])
                labels = labels_df.sort('synset_id')['name'].values
    
                indices = (-scores).argsort()[:5]
                ps = labels[indices]
    
                meta = [
                    (p, '%.5f' % scores[i])
                    for i, p in zip(indices, ps)
                ]
    
                print meta
    
        # Save
        print("Saving results into %s" % args.output_file)
        np.save(args.output_file, predictions)
    
    
    if __name__ == '__main__':
        main(sys.argv)

     三、测试和结果

    1.  原始测试

    python python/classify.py --print_results --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_iter_5000.caffemodel.h5 --labels_file data/cifar10/cifar10_words.txt  --center_only  examples/images/cat.jpg foo

    结果:

    Loading file: examples/images/cat.jpg
    Classifying 1 inputs.
    Done in 0.05 s.
    Predictions : [[ 0.03749448 0.0027075 0.02589573 0.21115269 0.04923972 0.48335615
    0.1005311 0.01322108 0.06116258 0.01523905]]
    0 , 0.0374945
    1 , 0.0027075
    2 , 0.0258957
    3 , 0.211153
    4 , 0.0492397
    5 , 0.483356
    6 , 0.100531
    7 , 0.0132211
    8 , 0.0611626
    9 , 0.015239
    labels_df = 
    name synset_id
    0 airplane
    1 automobile
    2 bird
    3 cat
    4 deer
    5 dog
    6 frog
    7 horse
    8 ship
    9 truck
    Saving results into foo

    二、使用完整模型

     训练模型:

    train_full.sh,  模型:  

    cifar10_full.prototxt

    得到的是:

    cifar10_full_iter_60000.caffemodel.h5 

    调用:

    python python/classify.py --print_results --model_def examples/cifar10/cifar10_full.prototxt --pretrained_model examples/cifar10/cifar10_full_iter_60000.caffemodel.h5 --labels_file data/cifar10/cifar10_words.txt  --center_only  examples/images/cat.jpg foo

    结果为:

    Done in 0.02 s.
    Predictions : [[ 0.06165585 0.00868315 0.02428157 0.15692885 0.17243297 0.4377735
    0.05209383 0.0376116 0.01845259 0.03008615]]
    0 , 0.0616559
    1 , 0.00868315
    2 , 0.0242816
    3 , 0.156929
    4 , 0.172433
    5 , 0.437773
    6 , 0.0520938
    7 , 0.0376116
    8 , 0.0184526
    9 , 0.0300861
    labels_df = 
    name synset_id
    0 airplane
    1 automobile
    2 bird
    3 cat
    4 deer
    5 dog
    6 frog
    7 horse
    8 ship
    9 truck
    Saving results into foo

     3 下面的脚本写的不对。

    python python/classify.py --print_results --model_def examples/cifar10/cifar10_full.prototxt --pretrained_model examples/cifar10_full_sigmoid_iter_60000.caffemodel --labels_file data/cifar10/cifar10_words.txt  --center_only  examples/images/cat.jpg foo
    /usr/local/lib/python2.7/dist-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15.
      warn("The default mode, 'constant', will be changed to 'reflect' in "
    Loading file: examples/images/cat.jpg
    Classifying 1 inputs.
    Done in 0.02 s.
    Predictions : [[ 1.  0.  0.  0.  0.  0.  0.  0.  0.  0.]]
    0 , 1.0
    1 , 0.0
    2 , 0.0
    3 , 0.0
    4 , 0.0
    5 , 0.0
    6 , 0.0
    7 , 0.0
    8 , 0.0
    9 , 0.0
    labels_df  = 
      name   synset_id
    0         airplane
    1       automobile
    2             bird
    3              cat
    4             deer
    5              dog
    6             frog
    7            horse
    8             ship
    9            truck
    Saving results into foo

      

    这时候classify.py会报错。 不想继续折腾了。那么就还是使用原来的旧的classify.py代码好了。

    python python/classify.py    --model_def examples/cifar10/cifar10_full.prototxt --pretrained_model examples/cifar10/cifar10_full_iter_60000.caffemodel.h5      examples/images/cat.jpg foo
    /usr/local/lib/python2.7/dist-packages/skimage/transform/_warps.py:84: UserWarning: The default mode, 'constant', will be changed to 'reflect' in skimage 0.15.
      warn("The default mode, 'constant', will be changed to 'reflect' in "
    Loading file: examples/images/cat.jpg
    Classifying 1 inputs.
    Done in 0.04 s.
    Predictions : [[  4.00000006e-01   0.00000000e+00   1.00000009e-01   1.00000001e-01
        1.72153580e-39   1.00000001e-01   2.65188813e-26   2.99999952e-01
        0.00000000e+00   0.00000000e+00]]
    0 , 0.4
    1 , 0.0
    2 , 0.1
    3 , 0.1
    4 , 1.72154e-39
    5 , 0.1
    6 , 2.65189e-26
    7 , 0.3
    8 , 0.0
    9 , 0.0
    Saving results into foo


      

    python python/classify.py --print_results --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_lr1_iter_10000.caffemodel.h5 --labels_file data/cifar10/cifar10_words.txt  --center_only  examples/images/cat.jpg foo
    Loading file: examples/images/cat.jpg
    Classifying 1 inputs.
    Done in 0.01 s.
    Predictions : [[  6.70117297e-05   2.16639066e-07   6.03203371e-04   6.75522548e-04
        2.93625082e-04   9.34589922e-01   2.98065459e-03   8.52398989e-06
        5.51625788e-02   5.61880460e-03]]
    0 , 6.70117e-05
    1 , 2.16639e-07
    2 , 0.000603203
    3 , 0.000675523
    4 , 0.000293625
    5 , 0.93459
    6 , 0.00298065
    7 , 8.52399e-06
    8 , 0.0551626
    9 , 0.0056188
    labels_df  = 
      name   synset_id
    0         airplane
    1       automobile
    2             bird
    3              cat
    4             deer
    5              dog
    6             frog
    7            horse
    8             ship
    9            truck
    Saving results into foo
    python python/classify.py --print_results --model_def examples/cifar10/cifar10_quick.prototxt --pretrained_model examples/cifar10/cifar10_quick_lr1_iter_10000.caffemodel.h5 --labels_file data/cifar10/cifar10_words.txt  --center_only  /home/sea/Downloads/animal/horse/0.jpeg foo
    Loading file: /home/sea/Downloads/animal/horse/0.jpeg
    Classifying 1 inputs.
    Done in 0.02 s.
    Predictions : [[  4.54714977e-09   2.20171312e-08   3.23279848e-04   9.74610925e-01
        7.34964502e-04   1.07501030e-04   2.41789930e-02   3.99016353e-05
        4.27404666e-06   1.10957735e-07]]
    0 , 4.54715e-09
    1 , 2.20171e-08
    2 , 0.00032328
    3 , 0.974611
    4 , 0.000734965
    5 , 0.000107501
    6 , 0.024179
    7 , 3.99016e-05
    8 , 4.27405e-06
    9 , 1.10958e-07
    labels_df  = 
      name   synset_id
    0         airplane
    1       automobile
    2             bird
    3              cat
    4             deer
    5              dog
    6             frog
    7            horse
    8             ship
    9            truck
    Saving results into foo
    Loading file: /home/sea/Downloads/animal/horse/3.jpg
    Classifying 1 inputs.
    Done in 0.01 s.
    Predictions : [[  3.89247731e-07   1.22837851e-09   4.36774513e-04   1.27305046e-01
        8.69564056e-01   4.88617570e-06   1.12547104e-06   2.68773409e-03
        3.65437597e-10   1.18015224e-11]]
    0 , 3.89248e-07
    1 , 1.22838e-09
    2 , 0.000436775
    3 , 0.127305
    4 , 0.869564
    5 , 4.88618e-06
    6 , 1.12547e-06
    7 , 0.00268773
    8 , 3.65438e-10
    9 , 1.18015e-11
    labels_df  = 
      name   synset_id
    0         airplane
    1       automobile
    2             bird
    3              cat
    4             deer
    5              dog
    6             frog
    7            horse
    8             ship
    9            truck
    Saving results into foo
    

      

    Loading file: /home/sea/Downloads/animal/horse/4.jpg
    Classifying 1 inputs.
    Done in 0.02 s.
    Predictions : [[  4.30966445e-08   1.11385980e-07   2.01909515e-05   1.71621272e-04
        1.72364298e-06   9.99796927e-01   1.49317827e-07   2.20107488e-10
        9.33068713e-06   6.23963229e-13]]
    0 , 4.30966e-08
    1 , 1.11386e-07
    2 , 2.0191e-05
    3 , 0.000171621
    4 , 1.72364e-06
    5 , 0.999797
    6 , 1.49318e-07
    7 , 2.20107e-10
    8 , 9.33069e-06
    9 , 6.23963e-13
    labels_df  = 
      name   synset_id
    0         airplane
    1       automobile
    2             bird
    3              cat
    4             deer
    5              dog
    6             frog
    7            horse
    8             ship
    9            truck
    Saving results into foo
    sea@sea-X550JK:~/caffe$

     继续训练模型:

    设置最高次数为80000,输入指令:

    caffe train 
        --solver=examples/cifar10/cifar10_full_solver_lr1.prototxt 
        --snapshot=examples/cifar10/cifar10_full_iter_70000.solverstate.h5  $@
    I1023 13:41:42.880556 12138 solver.cpp:273] Learning Rate Policy: fixed
    I1023 13:41:42.920240 12138 solver.cpp:310] Iteration 70000, loss = 0.296884
    I1023 13:41:42.920282 12138 solver.cpp:330] Iteration 70000, Testing net (#0)
    I1023 13:41:44.514853 12144 data_layer.cpp:73] Restarting data prefetching from start.
    I1023 13:41:44.582433 12138 solver.cpp:397]     Test net output #0: accuracy = 0.8155
    I1023 13:41:44.582465 12138 solver.cpp:397]     Test net output #1: loss = 0.53114 (* 1 = 0.53114 loss)
    I1023 13:41:44.582473 12138 solver.cpp:315] Optimization Done.
    I1023 13:41:44.582479 12138 caffe.cpp:259] Optimization Done.
    sea@sea-X550JK:~$ caffe device_query -gpu 0
    I1025 09:31:34.609318  5993 caffe.cpp:138] Querying GPUs 0
    I1025 09:31:34.613349  5993 common.cpp:178] Device id:                     0
    I1025 09:31:34.613365  5993 common.cpp:179] Major revision number:         5
    I1025 09:31:34.613368  5993 common.cpp:180] Minor revision number:         0
    I1025 09:31:34.613370  5993 common.cpp:181] Name:                          GeForce GTX 850M
    I1025 09:31:34.613373  5993 common.cpp:182] Total global memory:           4240965632
    I1025 09:31:34.613376  5993 common.cpp:183] Total shared memory per block: 49152
    I1025 09:31:34.613380  5993 common.cpp:184] Total registers per block:     65536
    I1025 09:31:34.613385  5993 common.cpp:185] Warp size:                     32
    I1025 09:31:34.613389  5993 common.cpp:186] Maximum memory pitch:          2147483647
    I1025 09:31:34.613394  5993 common.cpp:187] Maximum threads per block:     1024
    I1025 09:31:34.613399  5993 common.cpp:188] Maximum dimension of block:    1024, 1024, 64
    I1025 09:31:34.613404  5993 common.cpp:191] Maximum dimension of grid:     2147483647, 65535, 65535
    I1025 09:31:34.613409  5993 common.cpp:194] Clock rate:                    901500
    I1025 09:31:34.613414  5993 common.cpp:195] Total constant memory:         65536
    I1025 09:31:34.613418  5993 common.cpp:196] Texture alignment:             512
    I1025 09:31:34.613422  5993 common.cpp:197] Concurrent copy and execution: Yes
    I1025 09:31:34.613427  5993 common.cpp:199] Number of multiprocessors:     5
    I1025 09:31:34.613432  5993 common.cpp:200] Kernel execution timeout:      Yes
    caffe test -model examples/mnist/lenet_train_test.prototxt -weights examples/mnist/lenet_iter_5000.caffemodel -gpu 0 -iterations 100
    
    I1025 09:33:55.320236  6215 caffe.cpp:313] Batch 96, accuracy = 0.99
    I1025 09:33:55.320250  6215 caffe.cpp:313] Batch 96, loss = 0.0520074
    I1025 09:33:55.323004  6215 caffe.cpp:313] Batch 97, accuracy = 0.97
    I1025 09:33:55.323016  6215 caffe.cpp:313] Batch 97, loss = 0.0864158
    I1025 09:33:55.327574  6215 caffe.cpp:313] Batch 98, accuracy = 1
    I1025 09:33:55.327589  6215 caffe.cpp:313] Batch 98, loss = 0.00637727
    I1025 09:33:55.330288  6215 caffe.cpp:313] Batch 99, accuracy = 0.99
    I1025 09:33:55.330302  6215 caffe.cpp:313] Batch 99, loss = 0.0181812
    I1025 09:33:55.330315  6215 caffe.cpp:318] Loss: 0.0303416
    I1025 09:33:55.330328  6215 caffe.cpp:330] accuracy = 0.9902
    I1025 09:33:55.330353  6215 caffe.cpp:330] loss = 0.0303416 (* 1 = 0.0303416 loss)
    caffe time -model examples/mnist/lenet_train_test.prototxt -iterations 10
    
    I1025 09:35:24.342404  6288 caffe.cpp:403] Iteration: 9 forward-backward time: 71 ms.
    I1025 09:35:24.413054  6288 caffe.cpp:403] Iteration: 10 forward-backward time: 70 ms.
    I1025 09:35:24.413080  6288 caffe.cpp:406] Average time per layer: 
    I1025 09:35:24.413084  6288 caffe.cpp:409]      mnist    forward: 0.0106 ms.
    I1025 09:35:24.413089  6288 caffe.cpp:412]      mnist    backward: 0.0009 ms.
    I1025 09:35:24.413094  6288 caffe.cpp:409]      conv1    forward: 7.6432 ms.
    I1025 09:35:24.413097  6288 caffe.cpp:412]      conv1    backward: 7.9099 ms.
    I1025 09:35:24.413101  6288 caffe.cpp:409]      pool1    forward: 3.8151 ms.
    I1025 09:35:24.413105  6288 caffe.cpp:412]      pool1    backward: 0.7859 ms.
    I1025 09:35:24.413108  6288 caffe.cpp:409]      conv2    forward: 13.4716 ms.
    I1025 09:35:24.413112  6288 caffe.cpp:412]      conv2    backward: 26.854 ms.
    I1025 09:35:24.413115  6288 caffe.cpp:409]      pool2    forward: 2.0305 ms.
    I1025 09:35:24.413120  6288 caffe.cpp:412]      pool2    backward: 0.9011 ms.
    I1025 09:35:24.413123  6288 caffe.cpp:409]        ip1    forward: 2.6852 ms.
    I1025 09:35:24.413127  6288 caffe.cpp:412]        ip1    backward: 5.1399 ms.
    I1025 09:35:24.413131  6288 caffe.cpp:409]      relu1    forward: 0.0334 ms.
    I1025 09:35:24.413134  6288 caffe.cpp:412]      relu1    backward: 0.0371 ms.
    I1025 09:35:24.413138  6288 caffe.cpp:409]        ip2    forward: 0.1682 ms.
    I1025 09:35:24.413142  6288 caffe.cpp:412]        ip2    backward: 0.1895 ms.
    I1025 09:35:24.413146  6288 caffe.cpp:409]       loss    forward: 0.0589 ms.
    I1025 09:35:24.413149  6288 caffe.cpp:412]       loss    backward: 0.0023 ms.
    I1025 09:35:24.413156  6288 caffe.cpp:417] Average Forward pass: 29.9322 ms.
    I1025 09:35:24.413159  6288 caffe.cpp:419] Average Backward pass: 41.8356 ms.
    I1025 09:35:24.413163  6288 caffe.cpp:421] Average Forward-Backward: 71.8 ms.
    I1025 09:35:24.413167  6288 caffe.cpp:423] Total Time: 718 ms.
    I1025 09:35:24.413170  6288 caffe.cpp:424] *** Benchmark ends ***
    
    
  • 相关阅读:
    [BZOJ2431] [HAOI2009]逆序对数列
    [Luogu2323] [HNOI2006]公路修建问题
    [Luogu2455] [SDOI2006]线性方程组
    [BZOJ3550] [Sdoi2014]数数
    [Noip2017] 列队
    [Luogu2824] [HEOI2016/TJOI2016]排序
    [BZOJ1060] [ZJOI2007]时态同步
    P1036 选数 题解
    快速幂取模算法详解
    同余定理及其应用
  • 原文地址:https://www.cnblogs.com/leoking01/p/6955358.html
Copyright © 2011-2022 走看看