zoukankan      html  css  js  c++  java
  • bvlc_reference_caffenet.caffemodel

    #uncoding:utf-8
    # set up Python environment: numpy for numerical routines, and matplotlib for plotting
    import numpy as np
    import matplotlib.pyplot as plt
    # display plots in this notebook
    #%matplotlib inline
    
    # set display defaults
    plt.rcParams['figure.figsize'] = (10, 10)        # large images
    plt.rcParams['image.interpolation'] = 'nearest'  # don't interpolate: show square pixels
    plt.rcParams['image.cmap'] = 'gray'  # use 
    
    
    # The caffe module needs to be on the Python path;
    #  we'll add it here explicitly.
    import sys
    caffe_root = '/home/sea/caffe/'  # this file should be run from {caffe_root}/examples (otherwise change this line)
    sys.path.insert(0, caffe_root + 'python')
    
    import caffe
    # If you get "No module named _caffe", either you have no
    
    
    import os
    if os.path.isfile(caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'):
        print 'CaffeNet found.'
    else:
        print 'Downloading pre-trained CaffeNet model...'
        #!../scripts/download_model_binary.py ../models/bvlc_reference_caffenet
                    
                  
    caffe.set_mode_cpu() 
    
    model_def = caffe_root + 'models/bvlc_reference_caffenet/deploy.prototxt'
    model_weights = caffe_root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel'
    print "定义网络结构:"
    net = caffe.Net(model_def,      # defines the structure of the model
        model_weights,  # contains the trained weights
        caffe.TEST)     # use test mode (e.g., don't perform dropout)
    
    
    print "加载平均图:"
    # load the mean ImageNet image (as distributed with Caffe) for subtraction
    mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
    mu = mu.mean(1).mean(1)  # average over pixels to obtain the mean (BGR) pixel values
    print 'mean-subtracted values:', zip('BGR', mu)
    
    print "初始化转换输入数据格式转换器:"
    # create transformer for the input called 'data'
    transformer = caffe.io.Transformer({
        'data': net.blobs['data'].data.shape})
    
    print "设置输入数据格式转换器参数:"
    transformer.set_transpose('data', (2,0,1))  # move image channels to outermost dimension
    transformer.set_mean('data', mu)            # subtract the dataset-mean value in each channel
    transformer.set_raw_scale('data', 255)      # rescale from [0, 1] to [0, 255]
    transformer.set_channel_swap('data', (2,1,0))  # swap channels from RGB to BGR
    
    
    print "设置输入数据格式:"
    # set the size of the input (we can skip this if we're happy
    #  with the default; we can also change it later, e.g., for different batch sizes)
    net.blobs['data'].reshape(50,        # batch size
                              3,         # 3-channel (BGR) images
                              227, 227)  # image size is 227x227
    
    print "加载猫:"
    image = caffe.io.load_image(caffe_root + 'examples/images/cat.jpg')
    transformed_image = transformer.preprocess('data', image)
    plt.imshow(image)
    plt.show()
    
    
    print "将猫加载到内存:"
    # copy the image data into the memory allocated for the net
    net.blobs['data'].data[...] = transformed_image
    
    ### perform classification
    output = net.forward()
    output_prob = output['prob'][0]  # the output probability vector for the first image in the batch
    print 'predicted class is:', output_prob.argmax()
    
    
    print "加载图像集合标签:"
    # load ImageNet labels
    labels_file = caffe_root + 'data/ilsvrc12/synset_words.txt'
    if not os.path.exists(labels_file):
        print "/data/ilsvrc12/get......sh"
        #!../data/ilsvrc12/get_ilsvrc_aux.sh
                
    labels = np.loadtxt(labels_file, str, delimiter='	')
    print 'output label:', labels[output_prob.argmax()]
                
                
    # sort top five predictions from softmax output
    top_inds = output_prob.argsort()[::-1][:5]  # reverse sort and take five largest items
    
    print "打印分类结果:概率和标签:"
    print 'probabilities and labels:'
    zip(output_prob[top_inds], labels[top_inds])
    
    
    #%timeit net.forward()
    
    
    print "切换到gpu模式:"
    caffe.set_device(0)  # if we have multiple GPUs, pick the first one
    caffe.set_mode_gpu()
    net.forward()  # run once before timing to set up memory
    #%timeit net.forward()
    
    
    # for each layer, show the output shape
    for layer_name, blob in net.blobs.iteritems():
        print layer_name + '	' + str(blob.data.shape)
            
    for layer_name, param in net.params.iteritems():
        print layer_name + '	' + str(param[0].data.shape), str(param[1].data.shape)
            
            
    print "定义可视化直方图的函数:"
    def vis_square(data):
        """Take an array of shape (n, height, width) or (n, height, width, 3)
        and visualize each (height, width) thing in a grid of size approx. sqrt(n) by sqrt(n)"""
        # normalize data for display
        data = (data - data.min()) / (data.max() - data.min())
                                   
        # force the number of filters to be square
        n = int(np.ceil(np.sqrt(data.shape[0])))
        padding = (((0, n ** 2 - data.shape[0]),
            (0, 1), (0, 1))                 # add some space between filters
            + ((0, 0),) * (data.ndim - 3))  # don't pad the last dimension (if there is one)
        data = np.pad(data, padding, mode='constant', constant_values=1)  # pad with ones (white)
    
        # tile the filters into an image
        data = data.reshape((n, n) + data.shape[1:]).transpose((0, 2, 1, 3) + tuple(range(4, data.ndim + 1)))
        data = data.reshape((n * data.shape[1], n * data.shape[3]) + data.shape[4:])
    
        plt.imshow(data); plt.axis('off')
    #     plt.show()
                                                                           
    print "显示:直方图--conv1"
    # the parameters are a list of [weights, biases]
    filters = net.params['conv1'][0].data
    vis_square(filters.transpose(0, 2, 3, 1))
    # plt.show()
    
    
    print "显示:直方图:conv5"
    feat = net.blobs['conv1'].data[0, :36]
    vis_square(feat)
    # plt.show()
    
    
    print "显示:直方图, pool5"
    feat = net.blobs['pool5'].data[0]
    vis_square(feat)
    # plt.show()
    
    
    print "显示:hist -fc6 "
    feat = net.blobs['fc6'].data[0]
    plt.subplot(2, 1, 1)
    plt.plot(feat.flat)
    plt.subplot(2, 1, 2)
    _ = plt.hist(feat.flat[feat.flat > 0], bins=100)
    # plt.show()
    
    
    print "显示:t--prob"
    t = net.blobs['prob'].data[0]
    plt.figure(figsize=(15, 3))
    # plt.plot(feat.flat)
    # plt.show()
    
    
    
    # download an image
    #my_image_url = "..."  # paste your URL here
    # for example:
    # my_image_url = "https://upload.wikimedia.org/wikipedia/commons/b/be/Orang_Utan%2C_Semenggok_Forest_Reserve%2C_Sarawak%2C_Borneo%2C_Malaysia.JPG"
    #!wget -O image.jpg $my_image_url
    
    print "加载图像"
    # transform it and copy it into the net
    #image = caffe.io.load_image('/home/sea/shareVm/images/monkey/2.jpg')
    image=caffe.io.load_image('/home/sea/Downloads/555eae4532988a6dc175031eed969fc0.jpg')
    net.blobs['data'].data[...] = transformer.preprocess('data', image)
    
    # perform classification
    net.forward()
    
    # obtain the output probabilities
    output_prob = net.blobs['prob'].data[0]
    # print "output_prob = ", output_prob
    
    
    # sort top five predictions from softmax output
    top_inds = output_prob.argsort()[::-1][:5]
    print "top_inds = ", top_inds
    
    print "显示:图像"
    plt.imshow(image)
    plt.show()
    
    
    print "打印分类结果:"
    print 'probabilities and labels:'
    zd = zip(output_prob[top_inds], labels[top_inds])
    print "结果:  ",  zd
    for e in zd:
        print e
    
    #copy-------------------------------------------------------------------------------
    
    output_prob = output['prob'][0]  # the output probability vector for the first image in the batch
    print 'predicted class is:', output_prob.argmax()
    indd = output_prob.argmax()
    top_inds = indd
    print "加载图像集合标签:"
    print (output_prob[top_inds], labels[top_inds])
  • 相关阅读:
    为TextBox定义快捷键
    (转)再谈“我是怎么招聘程序员的”
    (转)jQuery框架学习第二天:jQuery中万能的选择器
    (转)MongoDB学习笔记(一) MongoDB介绍及安装
    asp.net 导出CSV
    领域驱动设计下系统层次结构风格(转载)
    (转)谈谈数据加密的处理提供各种算法处理
    (转)REST服务开发实战
    领域驱动设计系列文章(2)——浅析VO、DTO、DO、PO的概念、区别和用处
    (转)你的工作不是命令人们去做什么
  • 原文地址:https://www.cnblogs.com/leoking01/p/7814832.html
Copyright © 2011-2022 走看看