zoukankan      html  css  js  c++  java
  • caffe-ubuntu1604-gtx850m-i7-4710hq----bvlc_reference_caffenet.caffemodel

    bvlc_reference_caffenet.caffemodel

    ---
    name: BAIR/BVLC CaffeNet Model
    caffemodel: bvlc_reference_caffenet.caffemodel
    caffemodel_url: http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel
    license: unrestricted
    sha1: 4c8d77deb20ea792f84eb5e6d0a11ca0a8660a46
    caffe_commit: 709dc15af4a06bebda027c1eb2b3f3e3375d5077
    ---
    
    This model is the result of following the Caffe [ImageNet model training instructions](http://caffe.berkeleyvision.org/gathered/examples/imagenet.html).
    It is a replication of the model described in the [AlexNet](http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks) publication with some differences:
    
    - not training with the relighting data-augmentation;
    - the order of pooling and normalization layers is switched (in CaffeNet, pooling is done before normalization).
    
    This model is snapshot of iteration 310,000.
    The best validation performance during training was iteration 313,000 with validation accuracy 57.412% and loss 1.82328.
    This model obtains a top-1 accuracy 57.4% and a top-5 accuracy 80.4% on the validation set, using just the center crop.
    (Using the average of 10 crops, (4 + 1 center) * 2 mirror, should obtain a bit higher accuracy still.)
    
    This model was trained by Jeff Donahue @jeffdonahue
    
    ## License
    
    This model is released for unrestricted use.
    whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification    
    >  /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt  
    >   /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 
    >    data/ilsvrc12/imagenet_mean.binaryproto 
    >    /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt 
    >    /media/whale/wsWin10/images/person/2.jpg
    labels_.size() = 1000 output_layer->channels()  = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/2.jpg ----------
    0.3411 - "n03676483 lipstick, lip rouge"
    0.1024 - "n03325584 feather boa, boa"
    0.0978 - "n07615774 ice lolly, lolly, lollipop, popsicle"
    0.0734 - "n02786058 Band Aid"
    0.0601 - "n04357314 sunscreen, sunblock, sun blocker"

    翻译: 口红,口红

    whale@sea:/media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe$ ./build/install/bin/classification    
    >  /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/deploy.prototxt  
    >   /media/whale/wsWin10/wsUbuntu16.04/DlFrames/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel 
    >    data/ilsvrc12/imagenet_mean.binaryproto 
    >    /media/whale/wsWin10/wsCaffe/model-zoo/VGG16/synset_words.txt 
    >    /media/whale/wsWin10/images/person/3.jpg
    labels_.size() = 1000 output_layer->channels()  = 1000 ---------- Prediction for /media/whale/wsWin10/images/person/3.jpg ----------
    0.4030 - "n02883205 bow tie, bow-tie, bowtie"
    0.3799 - "n04350905 suit, suit of clothes"
    0.0473 - "n02865351 bolo tie, bolo, bola tie, bola"
    0.0131 - "n04591157 Windsor tie"
    0.0114 - "n02786058 Band Aid"

    领结,领带,领结

  • 相关阅读:
    集合的一些操作总结
    字符串的操作
    python字典的操作总结
    python中的列表知识总结
    Python利用文件操作实现用户名的存储登入操作
    如何理解:城市的“信息化→智能化→智慧化”
    程序员必备技能-怎样快速接手一个项目
    程序员的职业规划
    只要 8 个步骤,学会这个 Docker 命令终极教程!
    使用GitLab实现CI/CD
  • 原文地址:https://www.cnblogs.com/leoking01/p/8303212.html
Copyright © 2011-2022 走看看