zoukankan      html  css  js  c++  java
  • SVD奇异值分解

    http://foreveralbum.yo2.cn/articles/singular-value-decomposition-svd.html

    SVD奇异值分解

    SVD分解

    SVD分解是LSA的数学基础,本文是我的LSA学习笔记的一部分,之所以单独拿出来,是因为 SVD可以说是LSA的基础,要理解LSA必须了解SVD,因此将LSA笔记的SVD一节单独作为一篇文章。本节讨论SVD分解相关数学问题,一个分为3 个部分,第一部分讨论线性代数中的一些基础知识,第二部分讨论SVD矩阵分解,第三部分讨论低阶近似。本节讨论的矩阵都是实数矩阵。

    基础知识

    1. 矩阵的秩:矩阵的秩是矩阵中线性无关的行或列的个数

    2. 对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵

    3. 单位矩阵:如果对角矩阵中所有对角线上的元素都为零,该矩阵称为单位矩阵

    4. 特征值:对一个M x M矩阵C和向量X,如果存在λ使得下式成立

    2 

    则称λ为矩阵C的特征值,X称为矩阵的特征向量。非零特征值的个数小于等于矩阵的秩。

    5. 特征值和矩阵的关系:考虑以下矩阵

    clip_image004

    该矩阵特征值λ1 = 30,λ2 = 20,λ3 = 1。对应的特征向量

    clip_image006

    假设VT=(2,4,6) 计算S x VT

    clip_image008

    clip_image010

    有上面计算结果可以看出,矩阵与向量相乘的结果与特征值,特征向量有关。观察三个特征值λ1 = 30,λ2 = 20,λ3 = 1,λ3值最小,对计算结果的影响也最小,如果忽略λ3,那么运算结果就相当于从(60,80,6)转变为(60,80,0),这两个向量十分相近。这也 表示了数值小的特征值对矩阵-向量相乘的结果贡献小,影响小。这也是后面谈到的低阶近似的数学基础。

    矩阵分解

    1. 方阵的分解

    1) 设S是M x M方阵,则存在以下矩阵分解

    clip_image012

    其中U 的列为S的特征向量,clip_image014为对角矩阵,其中对角线上的值为S的特征值,按从大到小排列:

    clip_image016

    2) 设S是M x M 方阵,并且是对称矩阵,有M个特征向量。则存在以下分解

    clip_image018

    其中Q的列为矩阵S的单位正交特征向量,clip_image014[1]仍表示对角矩阵,其中对角线上的值为S的特征值,按从大到小排列。最后,QT=Q-1,因为正交矩阵的逆等于其转置。

    2. 奇异值分解

    上面讨论了方阵的分解,但是在LSA中,我们是要对Term-Document矩阵进行分解,很显然这个矩阵不是方阵。这时需要奇异值分解对Term-Document进行分解。奇异值分解的推理使用到了上面所讲的方阵的分解。

    假设C是M x N矩阵,U是M x M矩阵,其中U的列为CCT的正交特征向量,V为N x N矩阵,其中V的列为CTC的正交特征向量,再假设r为C矩阵的秩,则存在奇异值分解:

    clip_image020

    其中CCT和CTC的特征值相同,为clip_image022

    Σ为M X N,其中clip_image024clip_image026,其余位置数值为0,clip_image028的值按大小降序排列。以下是Σ的完整数学定义:

    clip_image030

    σi称为矩阵C的奇异值。

    用C乘以其转置矩阵CT得:

    clip_image032

    上式正是在上节中讨论过的对称矩阵的分解。

    奇异值分解的图形表示:

    clip_image034

    从图中可以看到Σ虽然为M x N矩阵,但从第N+1行到M行全为零,因此可以表示成N x N矩阵,又由于右式为矩阵相乘,因此U可以表示为M x N矩阵,VT可以表示为N x N矩阵

    3. 低阶近似

    LSA潜在语义分析中,低阶近似是为了使用低维的矩阵来表示一个高维的矩阵,并使两者之差尽可能的小。本节主要讨论低阶近似和F-范数。

    给定一个M x N矩阵C(其秩为r)和正整数k,我们希望找到一个M x N矩阵Ck,其秩不大于K。设X为C与Ck之间的差,X=C – Ck,X的F-范数为

    clip_image036

    当k远小于r时,称Ck为C的低阶近似,其中X也就是两矩阵之差的F范数要尽可能的小。

    SVD可以被用与求低阶近似问题,步骤如下:

    1. 给定一个矩阵C,对其奇异值分解:clip_image038

    2. 构造clip_image040,它是将clip_image042的第k+1行至M行设为零,也就是把clip_image042[1]的最小的r-k个(the r-k smallest)奇异值设为零。

    3. 计算Ckclip_image044

    回忆在基础知识一节里曾经讲过,特征值数值的大小对矩阵-向量相乘影响的大小成正比,而奇异值和特征值也是正比关系,因此这里选取数值最小的r-k个特征值设为零合乎情理,即我们所希望的C-Ck尽可能的小。完整的证明可以在Introduction to Information Retrieval[2]中找到。

    我们现在也清楚了LSA的基本思路:LSA希望通过降低传统向量空间的维度来去除空间中的“噪音”,而降维可以通过SVD实现,因此首先对Term-Document矩阵进行SVD分解,然后降维并构造语义空间。

  • 相关阅读:
    ExecuteScalar requires the command to have a transaction when the connection assigned to the command is in a pending
    如何从vss中分离程序
    String or binary data would be truncated
    the pop3 service failed to retrieve authentication type and cannot continue
    The POP3 service failed to start because
    IIS Error he system cannot find the file specified _找不到页面
    pku2575Jolly Jumpers
    pku2940Wine Trading in Gergovia
    pku3219二项式系数
    pku1029false coin
  • 原文地址:https://www.cnblogs.com/lexus/p/2277158.html
Copyright © 2011-2022 走看看