zoukankan      html  css  js  c++  java
  • 2019牛客多校第二场BEddy Walker 2——BM递推

    题意

    从数字 $0$ 除法,每次向前走 $i$ 步,$i$ 是 $1 sim K$ 中等概率随机的一个数,也就是说概率都是 $frac{1}{K}$。求落在过数字 $N$ 额概率,$N=-1$ 表示无穷远。

    分析

    设落在过 $i$ 的概率为 $p_i$,则 $p_i = frac{1}{K}p_{i-1} + frac{1}{K}p_{i-2}...+frac{1}{K}p_{i-k}$.

    以 $k=2$ 为例,

    $p_0 = 1 \
    p_1 = frac{1}{2} \
    p_2 = frac{1}{2}(frac{1}{2} + 1) = frac{3}{4} \
    p_3 = frac{1}{2}(frac{3}{4} + frac{1}{2}) = frac{5}{8} \
    p_4 = frac{1}{2}(frac{5}{8} + frac{3}{4}) = frac{11}{16}$

    容易推出 $p_n = frac{frac{2}{3}cdot 2^n + frac{1}{3}cdot (-1)^n}{2^n}$,

    可知,当 $n o infty$,$p_n=frac{2}{3}$.

    找规律,能发现 $n$ 为无穷大时 $p_n = frac{2}{k+1}$

    //$ 1 leq K_i leq 1021, -1 leq N_i leq 10^{18}$,矩阵快速幂会TLE的

    #include <bits/stdc++.h>
    
    using namespace std;
    #define rep(i,a,n) for (long long i=a;i<n;i++)
    #define per(i,a,n) for (long long i=n-1;i>=a;i--)
    #define pb push_back
    #define mp make_pair
    #define all(x) (x).begin(),(x).end()
    #define fi first
    #define se second
    #define SZ(x) ((long long)(x).size())
    typedef vector<long long> VI;
    typedef long long ll;
    typedef pair<long long,long long> PII;
    const ll mod=1000000007;
    ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;}
    // head
    
    long long _,n;
    namespace linear_seq
    {
        const long long N=10010;
        ll res[N],base[N],_c[N],_md[N];
    
        vector<long long> Md;
        void mul(ll *a,ll *b,long long k)
        {
            rep(i,0,k+k) _c[i]=0;
            rep(i,0,k) if (a[i]) rep(j,0,k)
                _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;
            for (long long i=k+k-1;i>=k;i--) if (_c[i])
                rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;
            rep(i,0,k) a[i]=_c[i];
        }
        long long solve(ll n,VI a,VI b)
        { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...
    //        printf("%d
    ",SZ(b));
            ll ans=0,pnt=0;
            long long k=SZ(a);
            assert(SZ(a)==SZ(b));
            rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;
            Md.clear();
            rep(i,0,k) if (_md[i]!=0) Md.push_back(i);
            rep(i,0,k) res[i]=base[i]=0;
            res[0]=1;
            while ((1ll<<pnt)<=n) pnt++;
            for (long long p=pnt;p>=0;p--)
            {
                mul(res,res,k);
                if ((n>>p)&1)
                {
                    for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;
                    rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;
                }
            }
            rep(i,0,k) ans=(ans+res[i]*b[i])%mod;
            if (ans<0) ans+=mod;
            return ans;
        }
        VI BM(VI s)
        {
            VI C(1,1),B(1,1);
            long long L=0,m=1,b=1;
            rep(n,0,SZ(s))
            {
                ll d=0;
                rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;
                if (d==0) ++m;
                else if (2*L<=n)
                {
                    VI T=C;
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    L=n+1-L; B=T; b=d; m=1;
                }
                else
                {
                    ll c=mod-d*powmod(b,mod-2)%mod;
                    while (SZ(C)<SZ(B)+m) C.pb(0);
                    rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;
                    ++m;
                }
            }
            return C;
        }
        long long gao(VI a,ll n)
        {
            VI c=BM(a);
            c.erase(c.begin());
            rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;
            return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));
        }
    };
    
    ll qpow(ll a, ll b, ll p)
    {
        ll ret = 1;
        while(b)
        {
            if(b & 1)  ret = ret * a %  p;
            a = a * a % p;
            b >>= 1;
        }
        return ret;
    }
    int k;
    vector<ll>p;
    
    int main()
    {
        int T;
        scanf("%d", &T);
        while(T--)
        {
            scanf("%d%lld", &k, &n);
            ll INV = qpow(k, mod-2, mod);
            p.clear();
            p.push_back(1);
            for(int i = 1;i < 2*k;i++)          //求出前2k项,给BM
            {
                ll tmp = 0;
                for(int j = i-1;j >= i-k && j >= 0;j--)  tmp = (tmp + p[j]) % mod;
                p.push_back(tmp * INV % mod);
            }
    
            //for(int i = 0;i < 2*k;i++)  printf("%lld ", p[i]);
            //printf("
    ");
    
            /*输出系数*/
            /*前k项递推,需要2*k项能确定*/
            //VI res = linear_seq::BM(p);
            //for(int i = 1;i < res.size();i++)  printf("%lld%c", (mod-res[i]) % mod, i == res.size()-1 ? '
    ' : ' ');
    
            if(n == -1)  printf("%lld
    ",2 * qpow(k+1, mod-2, mod) % mod);
            else printf("%I64d
    ",linear_seq::gao(p, n));
        }
    }
    View Code

    参考链接:https://blog.nowcoder.net/n/c7beb081cf2247779d2fa198b73a6658

  • 相关阅读:
    基础【五】字典的操作方法
    基础【四】列表的操作方法
    基础【三】字符串的操作方法
    基础【二】while循环及基本运算符
    基础【一】基础数据类型
    C++ string 深拷贝 与 浅拷贝
    多进程引用的动态链接库中的全局变量问题
    C++ 在类里面使用多线程技术
    openwrt 解决包依赖关系
    lua 的元表与元方法
  • 原文地址:https://www.cnblogs.com/lfri/p/11524181.html
Copyright © 2011-2022 走看看