题意
从数字 $0$ 除法,每次向前走 $i$ 步,$i$ 是 $1 sim K$ 中等概率随机的一个数,也就是说概率都是 $frac{1}{K}$。求落在过数字 $N$ 额概率,$N=-1$ 表示无穷远。
分析
设落在过 $i$ 的概率为 $p_i$,则 $p_i = frac{1}{K}p_{i-1} + frac{1}{K}p_{i-2}...+frac{1}{K}p_{i-k}$.
以 $k=2$ 为例,
$p_0 = 1 \
p_1 = frac{1}{2} \
p_2 = frac{1}{2}(frac{1}{2} + 1) = frac{3}{4} \
p_3 = frac{1}{2}(frac{3}{4} + frac{1}{2}) = frac{5}{8} \
p_4 = frac{1}{2}(frac{5}{8} + frac{3}{4}) = frac{11}{16}$
容易推出 $p_n = frac{frac{2}{3}cdot 2^n + frac{1}{3}cdot (-1)^n}{2^n}$,
可知,当 $n o infty$,$p_n=frac{2}{3}$.
找规律,能发现 $n$ 为无穷大时 $p_n = frac{2}{k+1}$
//$ 1 leq K_i leq 1021, -1 leq N_i leq 10^{18}$,矩阵快速幂会TLE的
#include <bits/stdc++.h> using namespace std; #define rep(i,a,n) for (long long i=a;i<n;i++) #define per(i,a,n) for (long long i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((long long)(x).size()) typedef vector<long long> VI; typedef long long ll; typedef pair<long long,long long> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head long long _,n; namespace linear_seq { const long long N=10010; ll res[N],base[N],_c[N],_md[N]; vector<long long> Md; void mul(ll *a,ll *b,long long k) { rep(i,0,k+k) _c[i]=0; rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod; for (long long i=k+k-1;i>=k;i--) if (_c[i]) rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod; rep(i,0,k) a[i]=_c[i]; } long long solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+... // printf("%d ",SZ(b)); ll ans=0,pnt=0; long long k=SZ(a); assert(SZ(a)==SZ(b)); rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1; Md.clear(); rep(i,0,k) if (_md[i]!=0) Md.push_back(i); rep(i,0,k) res[i]=base[i]=0; res[0]=1; while ((1ll<<pnt)<=n) pnt++; for (long long p=pnt;p>=0;p--) { mul(res,res,k); if ((n>>p)&1) { for (long long i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0; rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod; } } rep(i,0,k) ans=(ans+res[i]*b[i])%mod; if (ans<0) ans+=mod; return ans; } VI BM(VI s) { VI C(1,1),B(1,1); long long L=0,m=1,b=1; rep(n,0,SZ(s)) { ll d=0; rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod; if (d==0) ++m; else if (2*L<=n) { VI T=C; ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; L=n+1-L; B=T; b=d; m=1; } else { ll c=mod-d*powmod(b,mod-2)%mod; while (SZ(C)<SZ(B)+m) C.pb(0); rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod; ++m; } } return C; } long long gao(VI a,ll n) { VI c=BM(a); c.erase(c.begin()); rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod; return solve(n,c,VI(a.begin(),a.begin()+SZ(c))); } }; ll qpow(ll a, ll b, ll p) { ll ret = 1; while(b) { if(b & 1) ret = ret * a % p; a = a * a % p; b >>= 1; } return ret; } int k; vector<ll>p; int main() { int T; scanf("%d", &T); while(T--) { scanf("%d%lld", &k, &n); ll INV = qpow(k, mod-2, mod); p.clear(); p.push_back(1); for(int i = 1;i < 2*k;i++) //求出前2k项,给BM { ll tmp = 0; for(int j = i-1;j >= i-k && j >= 0;j--) tmp = (tmp + p[j]) % mod; p.push_back(tmp * INV % mod); } //for(int i = 0;i < 2*k;i++) printf("%lld ", p[i]); //printf(" "); /*输出系数*/ /*前k项递推,需要2*k项能确定*/ //VI res = linear_seq::BM(p); //for(int i = 1;i < res.size();i++) printf("%lld%c", (mod-res[i]) % mod, i == res.size()-1 ? ' ' : ' '); if(n == -1) printf("%lld ",2 * qpow(k+1, mod-2, mod) % mod); else printf("%I64d ",linear_seq::gao(p, n)); } }
参考链接:https://blog.nowcoder.net/n/c7beb081cf2247779d2fa198b73a6658