数的计算(数的计数)
题目描述
我们要求找出具有下列性质数的个数(包含输入的自然数n)。先输入一个自然数n(n<=1000),然后对此自然数按照如下方法进行处理:
- 不作任何处理;
- 在它的左边加上一个自然数,但该自然数不能超过原数的一半;
- 加上数后,在新加上数的左边继续按此规则进行处理,直到不能再加自然数为止.
例如:
输入: 6
满足条件的数为 6 (此部分不必输出)
16
26
126
36
136
输出: 6
输入
只有一行一个整数,为自然数n(n<=1000)
输出
输出满足条件数的个数
样例输入
6
样例输出
6
分析
-
手动按照上述过程进行计算,会发现这是个递归的过程,对每一个原始数字m,在前面加i(1,2,3,...m/2),即
h(n)=1+h(1)+f(2)+...+h(n/2)
,对于每一个i,要按照同样的规则进行,这用递归可以实现(见例程1),递归过程中,每遇到一个原始数,计数器加1,用来统计个数。 -
例程1在OJ中会显示超时,这是必然的,当n很大时,递归的过程就会很长,这主要源于其中会做大量的重复计算,每次计算h(n),都要重复计算h(1)....h(n/2),这样的问题在使用递归计算斐波那契数f(n)时,也会遇到,程序效率很低。解决的一个途径是使程序具有记忆功能,已计算出的数字就无需再次计算,直接使用即可。例程2使用数组实现了带记忆功能的递归,可以通过OJ系统。
-
也可以使用递推的方法来解决问题:已知
h(n)=1+h(1)+h(2)+...+h(n/2)
,这就是一个递归式,程序写起来很容易(见例程3),两层for循环就可完成,递推比起无记忆的递归来效率要高得多。例程1是指数级的时间复杂度,而例程3的时间复杂度为O(n2)。 -
问题可以进一步简化。通过对上面的公式进行推导可以发现:n为奇数时,
h(n)=h(n-1)
,n为偶数时,h(n)=h(n-1)+h(n/2)
,看懂了吗,使用这两个公式,可以将时间复杂度降低到O(n),见例程4。
例程1
#include<iostream>
using namespace std;
int ans; //计数器
void dfs(int m){
ans++; //每出现一次原始数,ans++
for(int i=1; i<=m/2; i++){
dfs(i); //递归
}
}
int main(){
int n;
cin>>n;
dfs(n);
cout<<ans;
return 0;
}
例程2
#include<iostream>
using namespace std;
int h[1001]; //记忆数组,存储计算出的h[m]
void dfs(int m){
if(h[m]!=0) return; //有记忆,不再递归
h[m]=1; //无记忆,初始化为1,递归累加计算
for(int i=1; i<=m/2; i++){
dfs(i); //递归
h[m]+=h[i]; //累加
}
}
int main(){
int n;
cin>>n;
dfs(n);
cout<<h[n];
return 0;
}
例程3
#include<iostream>
using namespace std;
int h[1001];
int main(){
int n;
cin>>n;
h[1]=1; //初始化第一项h[1]
for(int s=2;s<=n;s++){ //对第s项
h[s]=1; //数字s自己算一个
for(int i=1;i<=s/2;i++) h[s]+=h[i];
}
cout<<h[n];
return 0;
}
例程4
#include<iostream>
using namespace std;
int main(){
int n;
cin>>n;
h[1]=1; //初始化第一项
for(int i=2; i<=n; i++){
h[i]=h[i-1]; //递推
if(i%2==0) h[i]+=h[i/2]; //i为偶数时
}
cout<<h[n];
return 0;
}