zoukankan      html  css  js  c++  java
  • [数论]欧拉降幂

    前置知识
    欧拉函数
    欧拉定理:
      (a^{varphi(n)} equiv 1 mod{n})
    定义
    (b geq m), (a^b \% m = a^{b \% varphi(m) + varphi(m)} \% m)
    模板实现
    模板传送门

    #include <cstdio>
    #define ll long long
    
    const ll MOD = 1e9+7;
    
    ll read(){
        ll x = 0; int zf = 1; char ch = ' ';
        while (ch != '-' && (ch < '0' || ch > '9')) ch = getchar();
        if (ch == '-') zf = -1, ch = getchar();
        while (ch >= '0' && ch <= '9') x = x * 10 + ch - '0', ch = getchar(); return x * zf;
    }
    
    ll base[100005][25];
    ll bit[100005];
    int num[100005];
    
    inline bool insert(int pos, ll x, int &num){
    	for (int i = 20; ~i; --i)
    		if (x & (1ll << i))
    			if (!base[pos][i]){
    				base[pos][i] = x;
    				++num;
    				break;
    			}
    			else
    				x ^= base[pos][i];
    	return (x > 0);
    }
    
    inline ll judge(int pos, ll x){
    	for (int i = 20; ~i; --i){
            if ((1ll << i) & x){
                if (!base[pos][i])
                    return 0;
                x ^= base[pos][i];
            }
        }
        return (x == 0);
    }
    
    int main(){
    	int n = read(), q = read();
    	bit[0] = 1;
    	for (int i = 1; i <= n; ++i)
    	    bit[i] = (bit[i - 1] << 1ll) % MOD;
    	for (int i = 1; i <= n; ++i){
    	    int x = read();
    	    for (register int j = 20; ~j; --j) base[i][j] = base[i - 1][j];
    	    num[i] = num[i - 1];
    	    insert(i, x, num[i]);
        }
        for (int i = 0; i < q; ++i){
            int l = read(), x = read();
            if (!judge(l, x))
                printf("0
    ");
            else
                printf("%d
    ", bit[l - num[l]]);
        }
    	return 0;
    }
    
  • 相关阅读:
    作业四:结对编程项目---四则运算
    作业三: 代码规范、代码复审、PSP
    自动生成四则运算题目
    源程序版本管理软件和项目管理软件的优缺点
    学习进度表
    第一周随笔
    对之前问题的回答
    结对编程——四则运算
    PSP
    代码复审
  • 原文地址:https://www.cnblogs.com/linzhengmin/p/10896065.html
Copyright © 2011-2022 走看看