zoukankan      html  css  js  c++  java
  • BJUT数字图像处理作业

    一、

    1) 将宽为2n的正方形图像,用FFT算法从空域变换到频域,并用频域图像的模来进行显示。

      2) 使图像能量中心,对应到几何中心,并用频域图像的模来进行显示。

      3)将频域图象,通过FFT逆变换到空域,并显示。

    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <iostream>
    using namespace cv;
    using namespace std;
    
    int main()
    {
    
    	//以灰度模式读取原始图像并显示
    	Mat srcImage = imread("lena.png", 0);
    	if (srcImage.empty())
    	{
    		cout << "打开图像失败!" << endl;
    		return -1;
    	}
    	imshow("原始图像", srcImage);
    
    
    	//将输入图像延扩到最佳的尺寸,边界用0补充
    	int m = getOptimalDFTSize(srcImage.rows);
    	int n = getOptimalDFTSize(srcImage.cols);
    	//将添加的像素初始化为0.
    	Mat padded;
    	copyMakeBorder(srcImage, padded, 0, m - srcImage.rows, 0, n - srcImage.cols, BORDER_CONSTANT, Scalar::all(0));
    
    	//为傅立叶变换的结果(实部和虚部)分配存储空间。
    	//将planes数组组合合并成一个多通道的数组complexI
    	Mat planes[] = { Mat_<float>(padded), Mat::zeros(padded.size(), CV_32F) };
    	Mat complexI;
    	merge(planes, 2, complexI);
    
    	//进行就地离散傅里叶变换
    	dft(complexI, complexI);
    
    
    
    	//将复数转换为幅值,即=> log(1 + sqrt(Re(DFT(I))^2 + Im(DFT(I))^2))
    	split(complexI, planes); // 将多通道数组complexI分离成几个单通道数组,planes[0] = Re(DFT(I), planes[1] = Im(DFT(I))
    	magnitude(planes[0], planes[1], planes[0]);// planes[0] = magnitude  
    	Mat magnitudeImage = planes[0];
    
    	//进行对数尺度(logarithmic scale)缩放
    	magnitudeImage += Scalar::all(1);
    	log(magnitudeImage, magnitudeImage);//求自然对数
    
    	//剪切和重分布幅度图象限
    	//若有奇数行或奇数列,进行频谱裁剪      
    	magnitudeImage = magnitudeImage(Rect(0, 0, magnitudeImage.cols & -2, magnitudeImage.rows & -2));
    	//重新排列傅立叶图像中的象限,使得原点位于图像中心  
    	int cx = magnitudeImage.cols / 2;
    	int cy = magnitudeImage.rows / 2;
    	Mat q0(magnitudeImage, Rect(0, 0, cx, cy));   // ROI区域的左上
    	Mat q1(magnitudeImage, Rect(cx, 0, cx, cy));  // ROI区域的右上
    	Mat q2(magnitudeImage, Rect(0, cy, cx, cy));  // ROI区域的左下
    	Mat q3(magnitudeImage, Rect(cx, cy, cx, cy)); // ROI区域的右下
    	//交换象限(左上与右下进行交换)
    	Mat tmp;
    	q0.copyTo(tmp);
    	q3.copyTo(q0);
    	tmp.copyTo(q3);
    	//交换象限(右上与左下进行交换)
    	q1.copyTo(tmp);
    	q2.copyTo(q1);
    	tmp.copyTo(q2);
    
    	//归一化,用0到1之间的浮点值将矩阵变换为可视的图像格式
    	normalize(magnitudeImage, magnitudeImage, 0, 1, CV_MINMAX);
    
    	//显示效果图
    	imshow("频域", magnitudeImage);
    
    	//频域-->空域
    	Mat inversed;
    	dft(complexI, inversed, DFT_INVERSE | DFT_REAL_OUTPUT);
    	normalize(inversed, inversed, 0, 1, CV_MINMAX);
    	imshow("空域", inversed);
    
    	waitKey();
    
    	return 0;
    }
    


    二、

    对于下面这幅图像,请问可以通过那些图像增强的手段,达到改善视觉效果的目的?请显示处理结果,并附简要处理流程说明。


    #include <opencv2/opencv.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <iostream>
    using namespace std;
    using namespace cv;
    int ContrastValue; //对比度值
    int BrightValue;  //亮度值
    Mat src, dst;
    //改变图像对比度和亮度值的回调函数
    static void ContrastAndBright(int, void *)
    {
    	//创建窗口
    	namedWindow("【原始图窗口】", WINDOW_AUTOSIZE);
    	for (int y = 0; y < src.rows; y++)
    	{
    		for (int x = 0; x < src.cols; x++)
    		{
    			for (int c = 0; c < 3; c++)
    			{
    				dst.at<Vec3b>(y, x)[c] = saturate_cast<uchar>((ContrastValue * 0.01)*(src.at<Vec3b>(y, x)[c]) + BrightValue);
    			}
    		}
    	}
    	//显示图像
    	imshow("【原始图窗口】", src);
    	imshow("【效果图窗口】", dst);
    }
    
    int main(int argc, char *argv[])
    {
    	//打开图像
    	src = imread("two.png");
    	if (src.empty())
    	{
    		cout << "打开图像失败!" << endl;
    		return -1;
    	}
    	//中值滤波去噪
    	medianBlur(src, src, 3);
    	dst = Mat::zeros(src.size(), src.type());
    	//设定对比度和亮度的初值
    	ContrastValue = 80;
    	BrightValue = 80;
    	//创建窗口
    	namedWindow("【效果图窗口】", WINDOW_AUTOSIZE);
    	//创建轨迹条
    	createTrackbar("对比度:", "【效果图窗口】", &ContrastValue, 300, ContrastAndBright);
    	createTrackbar("亮   度:", "【效果图窗口】", &BrightValue, 200, ContrastAndBright);
    	//调用回调函数
    	ContrastAndBright(ContrastValue, 0);
    	ContrastAndBright(BrightValue, 0);
    	//等待用户按键,起到暂停的作用
    	waitKey();
    	return 0;
    }


    三、

    对于下面这幅图像,编程实现染色体计数,并附简要处理流程说明。


    #include <opencv2/opencv.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <iostream>
    #include <vector>
    using namespace std;
    using namespace cv;
    int main(int argc, char **argv)
    {
    	Mat gray, src, dst;
    	//打开图像
    	src = imread("image.png");
    	if (src.empty())
    	{
    		cout << "打开图像失败!" << endl;
    		return -1;
    	}
    	cout << "rows = " << src.rows << endl;
    	cout << "cols = " << src.cols << endl;
    	//转换为灰度图
    	cvtColor(src, gray, CV_BGR2GRAY);
    	//中值滤波
    	medianBlur(gray, gray, 7);
    	//图像二值化
    	threshold(gray, dst, 170, 255, THRESH_BINARY);
    	//腐蚀,默认内核3*3
    	erode(dst, dst, Mat());
    	//erode(dst, dst, Mat());
    	
    	Mat canny_output;
    	vector<vector<Point> > contours;
    	vector<Vec4i> hierarchy;
    	//画轮廓线
    	Canny(dst, canny_output, 100, 100 * 2, 3);
    	imwrite("data.png", dst);
    	
    	//检测轮廓
    	findContours(dst, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0));
    	cout << "一共检测到染色体数目:" << contours.size() - 1 << endl;
    	/*
    	for (int i = 0; i < contours.size(); i++)
    	{
    		for (int j = 0; j < contours[i].size(); j++)
    		{
    			cout << contours[i][j] << " ";
    		}
    		cout << ";" << endl;
    	}
    	*/
    
    	//显示图片
    	imshow("src", src);
    	imshow("canny_output", canny_output);
    	
    	
    	//将图片保存到文件
    	imwrite("dst.png", canny_output);
    	//等待用户输入
    	waitKey();
    	return 0;
    }
    
    
    
    
    //高斯滤波
    //GaussianBlur(gray, gray, Size(5, 5), 0, 0);
    
    //双边滤波
    //bilateralFilter(gray, gray, 5, 10.0, 2.0);
    
    //中值滤波
    //medianBlur(gray, gray, 3);


    四、

    对MNIST手写数字数据库(可在网上搜索下载),编程实现来提取其链码。
    #include <opencv2/opencv.hpp>
    #include <opencv2/imgproc.hpp>
    #include <opencv2/highgui.hpp>
    #include <iostream>
    #include <vector>
    #include <string>
    #include <fstream>
    
    using namespace std;
    using namespace cv;
    
    //格式转换
    int ReverseInt(int i)
    {
    	unsigned char ch1, ch2, ch3, ch4;
    	ch1 = i & 255;
    	ch2 = (i >> 8) & 255;
    	ch3 = (i >> 16) & 255;
    	ch4 = (i >> 24) & 255;
    	return((int)ch1 << 24) + ((int)ch2 << 16) + ((int)ch3 << 8) + ch4;
    }
    
    /**
    *  将Mnist数据库读取到OpenCV::Mat格式中
    *  格式:
    *  magic number
    *  number of images
    *  rows
    *  cols
    *  a very very long vector contains all digits
    */
    void read_Mnist(string filename, vector<Mat> &vec)
    {
    	ifstream file(filename, ios::binary);
    	if (file.is_open())
    	{
    		int magic_number = 0;
    		int number_of_images = 0;
    		int n_rows = 0;
    		int n_cols = 0;
    		file.read((char*)&magic_number, sizeof(magic_number));
    		magic_number = ReverseInt(magic_number);
    
    		file.read((char*)&number_of_images, sizeof(number_of_images));
    		number_of_images = ReverseInt(number_of_images);
    
    		file.read((char*)&n_rows, sizeof(n_rows));
    		n_rows = ReverseInt(n_rows);
    
    		file.read((char*)&n_cols, sizeof(n_cols));
    		n_cols = ReverseInt(n_cols);
    
    		for (int i = 0; i < number_of_images; ++i)
    		{
    			cv::Mat tp = Mat::zeros(n_rows, n_cols, CV_8UC1);
    			for (int r = 0; r < n_rows; ++r)
    			{
    				for (int c = 0; c < n_cols; ++c)
    				{
    					unsigned char temp = 0;
    					file.read((char*)&temp, sizeof(temp));
    					tp.at<uchar>(r, c) = (int)temp;
    				}
    			}
    			vec.push_back(tp);
    		}
    	}//if
    }
    
    int main(int argc, char **argv)
    {
    	int count = 1;
    	//存储Mnist字库
    	vector<Mat> vec;
    	//将Mnist字库读取到vector中
    	read_Mnist("t10k-images.idx3-ubyte", vec);
    	cout << "共含有:" << vec.size() << "幅图片" << endl;
    
    	for (auto iter = vec.begin(); iter != vec.end(); iter++)
    	{
    		cout << "第" << count++ << "幅图片..." << endl;
    		//显示Mnist字库
    		imshow("Mnist", *iter);
    		vector<vector<Point> > contours;
    
    		//读取轮廓
    		findContours(*iter, contours, CV_RETR_EXTERNAL, CV_CHAIN_CODE);
    		//输出链码
    		for (int i = 0; i < contours.size(); i++)
    		{
    			for (int j = 0; j < contours[i].size(); j++)
    			{
    				cout << contours[i][j];
    			}
    			cout << endl;
    		}
    		contours.clear();
    		waitKey(1000);
    	}
    	waitKey();
    	return 0;
    }

    详细说明:
  • 相关阅读:
    构造回文的最小插入次数
    动态规划设计:最大子数组
    状态压缩:对动态规划进行降维打击
    团灭 LeetCode 股票买卖问题
    经典动态规划:戳气球
    贪心算法之区间调度问题
    微信分享 添加URL Schemes
    UITouch的用法
    HTTP协议详解
    经典SQL语句大全
  • 原文地址:https://www.cnblogs.com/lgh1992314/p/6616237.html
Copyright © 2011-2022 走看看