题目链接:6709 Mosaic
题解:参考这个博客:二维线段树,先按行建树然后每一个节点也是一个棵线段树按列建。
#include<bits/stdc++.h> #include<cmath> #include<set> #include<cstdio> #include<iomanip> #include<iostream> #include<string> #include<cstring> #include<algorithm> #define pb push_back #define mk make_pair #define fi first #define se second #define ll long long #define PI 3.14159265 #define ls l,m,rt<<1 #define rs m+1,r,rt<<1|1 #define eps 1e-7 using namespace std; typedef unsigned long long ull; typedef pair<ll,ll> pll; typedef pair<int,int>pii; const int mod=1e9+9; const int INF=0x4f4f4f4f; const int base=13331; const ll inf=1e18+100; const int maxn=800; int n,m,cnt,num[maxn+5][maxn+5],t; struct segmentxy { int MIN[(maxn<<2)+5][(maxn<<2)+5],MAX[(maxn<<2)+5][(maxn<<2)+5],lx,rx,ly,ry,fa,is_leaf,px,py,val;//fa是当前x树的根,is判断是否为叶节点的树 void pushupx(int fa,int p)//更新行 { MIN[fa][p]=min(MIN[fa<<1][p],MIN[fa<<1|1][p]); MAX[fa][p]=max(MAX[fa<<1][p],MAX[fa<<1|1][p]); } void pushupy(int fa,int p)//更新列 { MIN[fa][p]=min(MIN[fa][p<<1],MIN[fa][p<<1|1]); MAX[fa][p]=max(MAX[fa][p<<1],MAX[fa][p<<1|1]); } void buildy(int l,int r,int rt,int *a) { if(l==r){if(is_leaf)MAX[fa][rt]=MIN[fa][rt]=a[l];else pushupx(fa,rt);return;} int m=(l+r)>>1; buildy(ls,a);buildy(rs,a); pushupy(fa,rt); } void buildx(int l,int r,int rt) { if(l==r){is_leaf=true;fa=rt;buildy(ly,ry,1,num[l]);} else { int m=(l+r)>>1; buildx(ls);buildx(rs); fa=rt;is_leaf=false;buildy(ly,ry,1,num[l]); } } void build(int xl,int xr,int yl,int yr) { lx=xl;rx=xr;ly=yl;ry=yr; buildx(lx,rx,1); } void updatey(int l,int r,int rt) { if(l==r){if(is_leaf)MAX[fa][rt]=MIN[fa][rt]=val;else pushupx(fa,rt);return;} { int m=(l+r)>>1; if(py<=m)updatey(ls); else updatey(rs); pushupy(fa,rt); } } void updatex(int l,int r,int rt) { if(l==r){is_leaf=true;fa=rt;updatey(1,n,1);return;} else { int m=(l+r)>>1; if(px<=m)updatex(ls); else updatex(rs); is_leaf=false;fa=rt;updatey(1,n,1); } } void update(int x,int y,int z) { px=x;py=y;val=z;updatex(1,n,1); } int querymax_y(int l,int r,int rt) { if(ly<=l&&r<=ry){return MAX[fa][rt];} else { int m=(l+r)>>1,ans=0; if(ly<=m)ans=max(ans,querymax_y(ls)); if(ry>m)ans=max(ans,querymax_y(rs)); return ans; } } int querymax_x(int l,int r,int rt) { if(lx<=l&&r<=rx){fa=rt;return querymax_y(1,n,1);} else { int ans=0;int m=(l+r)>>1;fa=rt; if(lx<=m)ans=max(ans,querymax_x(ls)); if(rx>m) ans=max(ans,querymax_x(rs)); return ans; } } int querymin_y(int l,int r,int rt) { if(ly<=l&&r<=ry){return MIN[fa][rt];} else { int m=(l+r)>>1,ans=INF; if(ly<=m)ans=min(ans,querymin_y(ls)); if(ry>m)ans=min(ans,querymin_y(rs)); return ans; } } int querymin_x(int l,int r,int rt) { if(lx<=l&&r<=rx){fa=rt;return querymin_y(1,n,1);} else { int ans=INF;int m=(l+r)>>1;fa=rt; if(lx<=m)ans=min(ans,querymin_x(ls)); if(rx>m)ans=min(ans,querymin_x(rs)); return ans; } } int query(int xl,int xr,int yl,int yr) { lx=xl;rx=xr;ly=yl;ry=yr; int an1=querymax_x(1,n,1); int an2=querymin_x(1,n,1); return (an1+an2)>>1; } }tr; int main() { scanf("%d",&t); for(int cas=1;cas<=t;cas++) { printf("Case #%d: ",cas); scanf("%d",&n); for(int i=1;i<=n;i++) { for(int j=1;j<=n;j++) { scanf("%d",&num[i][j]); } } tr.build(1,n,1,n); scanf("%d",&m); while(m--) { int lx,rx,ly,ry,x,y,z; scanf("%d %d %d",&x,&y,&z);z/=2; lx=max(0,x-z);rx=min(n,x+z); ly=max(0,y-z);ry=min(n,y+z); int ans=tr.query(lx,rx,ly,ry); printf("%d ",ans); tr.update(x,y,ans); } } return 0; }