zoukankan      html  css  js  c++  java
  • PCL点云特征描述与提取(4)

    如何从一个深度图像(range image)中提取NARF特征

    代码解析narf_feature_extraction.cpp

    #include <iostream>
    
    #include <boost/thread/thread.hpp>
    #include <pcl/range_image/range_image.h>
    #include <pcl/io/pcd_io.h>
    #include <pcl/visualization/range_image_visualizer.h>
    #include <pcl/visualization/pcl_visualizer.h>
    #include <pcl/features/range_image_border_extractor.h>
    #include <pcl/keypoints/narf_keypoint.h>
    #include <pcl/features/narf_descriptor.h>
    #include <pcl/console/parse.h>
    
    typedef pcl::PointXYZ PointType;
    
    //参数的设置
    float angular_resolution = 0.5f;
    float support_size = 0.2f;
    pcl::RangeImage::CoordinateFrame coordinate_frame = pcl::RangeImage::CAMERA_FRAME;
    bool setUnseenToMaxRange = false;
    bool rotation_invariant = true;
    
    //命令帮助
    void 
    printUsage (const char* progName)
    {
      std::cout << "
    
    Usage: "<<progName<<" [options] <scene.pcd>
    
    "
                << "Options:
    "
                << "-------------------------------------------
    "
                << "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")
    "
                << "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")
    "
                << "-m           Treat all unseen points to max range
    "
                << "-s <float>   support size for the interest points (diameter of the used sphere - "
                                                                      "default "<<support_size<<")
    "
                << "-o <0/1>     switch rotational invariant version of the feature on/off"
                <<               " (default "<< (int)rotation_invariant<<")
    "
                << "-h           this help
    "
                << "
    
    ";
    }
    
    void 
    setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)//setViewerPose
    {
      Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f (0, 0, 0);
      Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f (0, 0, 1) + pos_vector;
      Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f (0, -1, 0);
      viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],
                                look_at_vector[0], look_at_vector[1], look_at_vector[2],
                                up_vector[0], up_vector[1], up_vector[2]);
    }
    
    int 
    main (int argc, char** argv)
    {
     // 设置参数检测
      if (pcl::console::find_argument (argc, argv, "-h") >= 0)
      {
        printUsage (argv[0]);
        return 0;
      }
      if (pcl::console::find_argument (argc, argv, "-m") >= 0)
      {
        setUnseenToMaxRange = true;
        cout << "Setting unseen values in range image to maximum range readings.
    ";
      }
      if (pcl::console::parse (argc, argv, "-o", rotation_invariant) >= 0)
        cout << "Switching rotation invariant feature version "<< (rotation_invariant ? "on" : "off")<<".
    ";
      int tmp_coordinate_frame;
      if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
      {
        coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
        cout << "Using coordinate frame "<< (int)coordinate_frame<<".
    ";
      }
      if (pcl::console::parse (argc, argv, "-s", support_size) >= 0)
        cout << "Setting support size to "<<support_size<<".
    ";
      if (pcl::console::parse (argc, argv, "-r", angular_resolution) >= 0)
        cout << "Setting angular resolution to "<<angular_resolution<<"deg.
    ";
      angular_resolution = pcl::deg2rad (angular_resolution);
      
    //打开一个磁盘中的.pcd文件  但是如果没有指定就会自动生成
      pcl::PointCloud<PointType>::Ptr    point_cloud_ptr (new pcl::PointCloud<PointType>);
      pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
    
      pcl::PointCloud<pcl::PointWithViewpoint> far_ranges;
      Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
      std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
      if (!pcd_filename_indices.empty ())   //检测是否有far_ranges.pcd
      {
        std::string filename = argv[pcd_filename_indices[0]];
        if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
        {
          cerr << "Was not able to open file ""<<filename<<"".
    ";
          printUsage (argv[0]);
          return 0;
        }
        scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
                                                                   point_cloud.sensor_origin_[1],
                                                                   point_cloud.sensor_origin_[2])) *
                            Eigen::Affine3f (point_cloud.sensor_orientation_);
        std::string far_ranges_filename = pcl::getFilenameWithoutExtension (filename)+"_far_ranges.pcd";
        if (pcl::io::loadPCDFile (far_ranges_filename.c_str (), far_ranges) == -1)
          std::cout << "Far ranges file ""<<far_ranges_filename<<"" does not exists.
    ";
      }
      else
      {
        setUnseenToMaxRange = true;
        cout << "
    No *.pcd file given => Genarating example point cloud.
    
    ";
        for (float x=-0.5f; x<=0.5f; x+=0.01f)   //如果没有打开的文件就生成一个矩形的点云
        {
          for (float y=-0.5f; y<=0.5f; y+=0.01f)
          {
            PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
            point_cloud.points.push_back (point);
          }
        }
        point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
      }
      
    //从点云中建立生成深度图
      float noise_level = 0.0;    
      float min_range = 0.0f;
      int border_size = 1;
      boost::shared_ptr<pcl::RangeImage> range_image_ptr (new pcl::RangeImage);
      pcl::RangeImage& range_image = *range_image_ptr;   
      range_image.createFromPointCloud (point_cloud, angular_resolution, pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
                                       scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
      range_image.integrateFarRanges (far_ranges);
      if (setUnseenToMaxRange)
        range_image.setUnseenToMaxRange ();
      
      //打开3D viewer并加入点云
      pcl::visualization::PCLVisualizer viewer ("3D Viewer");
      viewer.setBackgroundColor (1, 1, 1);
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
      viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
      //viewer.addCoordinateSystem (1.0f, "global");
      //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
      //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
      viewer.initCameraParameters ();
      setViewerPose (viewer, range_image.getTransformationToWorldSystem ());
      //显示
      pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
      range_image_widget.showRangeImage (range_image);
      
      //提取NARF特征
      pcl::RangeImageBorderExtractor range_image_border_extractor;    //申明深度图边缘提取器
      pcl::NarfKeypoint narf_keypoint_detector;                       //narf_keypoint_detector为点云对象
    
      narf_keypoint_detector.setRangeImageBorderExtractor (&range_image_border_extractor);
      narf_keypoint_detector.setRangeImage (&range_image);
      narf_keypoint_detector.getParameters ().support_size = support_size;    //获得特征提取的大小
      
      pcl::PointCloud<int> keypoint_indices;
      narf_keypoint_detector.compute (keypoint_indices);
      std::cout << "Found "<<keypoint_indices.points.size ()<<" key points.
    ";
    
      // ----------------------------------------------
      // -----Show keypoints in range image widget-----
      // ----------------------------------------------
      //for (size_t i=0; i<keypoint_indices.points.size (); ++i)
        //range_image_widget.markPoint (keypoint_indices.points[i]%range_image.width,
                                      //keypoint_indices.points[i]/range_image.width);
      
      //在3Dviewer显示提取的特征信息
      pcl::PointCloud<pcl::PointXYZ>::Ptr keypoints_ptr (new pcl::PointCloud<pcl::PointXYZ>);
      pcl::PointCloud<pcl::PointXYZ>& keypoints = *keypoints_ptr;
      keypoints.points.resize (keypoint_indices.points.size ());
      for (size_t i=0; i<keypoint_indices.points.size (); ++i)
        keypoints.points[i].getVector3fMap () = range_image.points[keypoint_indices.points[i]].getVector3fMap ();
      pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ> keypoints_color_handler (keypoints_ptr, 0, 255, 0);
      viewer.addPointCloud<pcl::PointXYZ> (keypoints_ptr, keypoints_color_handler, "keypoints");
      viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 7, "keypoints");
      
      //在关键点提取NARF描述子
      std::vector<int> keypoint_indices2;
      keypoint_indices2.resize (keypoint_indices.points.size ());
      for (unsigned int i=0; i<keypoint_indices.size (); ++i) // This step is necessary to get the right vector type
        keypoint_indices2[i]=keypoint_indices.points[i];      ///建立NARF关键点的索引向量,此矢量作为NARF特征计算的输入来使用
    
      pcl::NarfDescriptor narf_descriptor (&range_image, &keypoint_indices2);//创建narf_descriptor对象。并给了此对象输入数据(特征点索引和深度像)
      narf_descriptor.getParameters ().support_size = support_size;//support_size确定计算描述子时考虑的区域大小
      narf_descriptor.getParameters ().rotation_invariant = rotation_invariant;    //设置旋转不变的NARF描述子
      pcl::PointCloud<pcl::Narf36> narf_descriptors;               //创建Narf36的点类型输入点云对象并进行实际计算
      narf_descriptor.compute (narf_descriptors);                 //计算描述子
      cout << "Extracted "<<narf_descriptors.size ()<<" descriptors for "   //打印输出特征点的数目和提取描述子的数目
                          <<keypoint_indices.points.size ()<< " keypoints.
    ";
      
    //主循环函数
      while (!viewer.wasStopped ())
      {
        range_image_widget.spinOnce ();  // process GUI events
        viewer.spinOnce ();
        pcl_sleep(0.01);
      }
    }

    编译运行./narf_feature_extraction -m

    这将自动生成一个呈矩形的点云,检测的特征点处在角落处,参数-m是必要的,因为矩形周围的区域观测不到,但是属于边界部分,因此系统无法检测到这部分区域的特征点,选项-m将看不到的区域改变到最大范围读取,从而使系统能够使用这些边界区域。

    (2)特征描述算子算法基准化分析

    使用FeatureEvaluationFramework类对不同的特征描述子算法进行基准测试,基准测试框架可以测试不同种类的特征描述子算法,通过选择输入点云,算法参数,下采样叶子大小,搜索阀值等独立变量来进行测试。

    使用FeatureCorrespondenceTest类执行一个单一的“基于特征的对应估计测试”执行以下的操作

       1.FeatureCorrespondenceTest类取两个输入点云(源与目标) 它将指定算法和参数,在每个点云中计算特征描述子

      2.基于n_D特征空间中的最近邻元素搜索,源点云中的每个特征将和目标点云中对应的特征相对照

      3 。对于每一个点,系统将把估计的目标点的三维位置和之前已知的实际位置相比

     4 。如果这两个点很接近(取决与决定的阀值)那么对应就成功,否则失败

     5 计算并保存成功和失败的总数,以便进一步分析

    微信公众号号可扫描二维码一起共同学习交流

  • 相关阅读:
    Visual C# 3.0 新特性概览
    一个C#睡前故事[翻译]
    ASP.NET User Control使用技巧一则
    Visual Studio 2005 调试器的新增功能
    .NET Framework 3.0新特性
    客户端提高WEB页面显示速度的方法
    VS.Net 2005中如何:使用“编辑并继续”
    如何在 VS 2005 里调试 Javascript
    关于DotNES
    Sql语句优化汇总(CSDN上的帖子)
  • 原文地址:https://www.cnblogs.com/li-yao7758258/p/6483721.html
Copyright © 2011-2022 走看看