zoukankan      html  css  js  c++  java
  • Neville 插值方法

    简介

    wikipedia: Neville's method

    在数学上,Neville 算法是一种计算插值多项式方法,由数学家Eric Harold Neville提出。由给定的n+1个节点,存在一个唯一的幂次≤n的多项式存在,并且通过给定点。

    算法

    给定n+1个节点及其对应函数值 ((x_i, y_i)),假设 (P_{i,j}) 表示 (j-i) 阶多项式,并且满足通过节点 ((x_k, y_k) quad k =i, i+1, cdots, j)(P_{i,j}) 满足以下迭代关系

    [egin{eqnarray} egin{aligned} & p_{i,i}(x) = y_i cr & P_{i,j}(x) = frac{(x_j - x)p_{i,j-1}(x) + (x - x_i)p_{i+1,j}(x)}{x_j - x_i}, quad 0le ile j le n end{aligned} end{eqnarray}]

    以n=4的节点举例,其迭代过程为

    [egin{eqnarray} egin{aligned} & p_{1,1}(x) = y_1, cr & p_{2,2}(x) = y_2, p_{1,2}(x), cr & p_{3,3}(x) = y_3, p_{2,3}(x), p_{1,3}(x),cr & p_{4,4}(x) = y_4, p_{3,4}(x), p_{2,4}(x), p_{1,4}(x)cr end{aligned} end{eqnarray}]

    代码

    伪代码

    • 由于计算插值点为一向量,为避免过多层循环嵌套,将每个 (P_{i,j}) 都改写为向量形式,各元素分别储存多项式在插值点 (x_0) 处函数值。
    • 只有每次当一列 (P_{i,j}) 计算完后,才能利用迭代公式计算下一列 (P_{i,j}) 多项式,因此外层循环为计算每列 (P_{i,j}) 多项式。
    • 每列 (P_{i,j}) 个数是逐渐减少的,最开始有n个多项式,最终循环只有一个。

    可将矩阵P[nRow,nCol]用于存储多项式 (P_{i,j}(x))。其中每行为 (P_{i,j}(x_k)) 在 nCol 个插值点(x_k)处函数值。每次外层循环 (P_{i,j}(x)) 个数减少,此时从最后一行开始舍弃,每次只循环

    for irow = 1: (nRow - icol) % 
    

    (x_i)(x_j)分别用变量x1与x2代替。迭代公式可表示为

    for icol = 1:nRow - 1
        for irow = 1: (nRow - icol) % 
            x1 = nodes(irow); x2 = nodes(irow + icol);
            P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
        end% for
    end% for
    

    最终完整代码为

    function evalPol = f1300000_Neville(x0, nodes, fnodes)
    % Implement Neville's algorithm to evaluate interpolation polynomial at x0
    % Input:
    %   x0  - the point where we want to evaluate the polynomial
    %   nodes   - vector containing the interpolation nodes
    %   fnodes  - vector containing the values of the function
    % Output:
    %   evalPol - vector containing the value at x0 of the different 
    %               the interpolating polynomials
    
    if iscolumn(x0)
        x0 = x0'; % transfer to row vector
    end
    
    if isrow(fnodes)
        fnodes = fnodes';
    end
    
    nCol = length(x0);
    nRow = length(nodes);
    
    % P = zeros(nRow, nCol);
    P = repmat(fnodes, 1, nCol);
    
    for icol = 1:nRow - 1
        for irow = 1: (nRow - icol) % 
            x1 = nodes(irow); x2 = nodes(irow + icol);
            P(irow, :) = ( (x2 - x0).*P(irow, :) + (x0 - x1 ).*P(irow+1, :) )./( x2 - x1 );
        end% for
    end% for
    
    evalPol = P(1,:);
    end
    
  • 相关阅读:
    SQLSERVER 2008 编辑所有或者任意行
    在SQL2008和2012里面怎么让显示全部行和编辑 全部而不是200和1000
    sql server 提取汉字/数字/字母的方法
    [再寄小读者之数学篇](2014-05-12 曲线的弧长计算)
    [复变函数]第23堂课 6.2 用留数定理计算实积分 (续)
    [再寄小读者之数学篇](2014-04-23 行列式的导数)
    [再寄小读者之数学篇](2014-04-22 平方差公式在矩阵中的表达)
    康乐不风流之爱解题的pde灌水王张祖锦
    [复变函数]第22堂课 6.2 用留数定理计算实积分
    [Tex学习笔记]数学公式再次测试
  • 原文地址:https://www.cnblogs.com/li12242/p/5047042.html
Copyright © 2011-2022 走看看