Numpy
Numpy 是 Python 数据科学计算的核心库,提供了高性能的多维数组对象及处理数组的工具
使用方式
import numpy as np
数组
生成数组
简单生成
a = np.array([1, 2, 3]) # <class 'numpy.ndarray'> # [1 2 3] a = np.array([1, '2', 3]) # 取值为字符串 # <class 'numpy.ndarray'> # ['1' '2' '3'] a = np.array([1, 2.0, 3]) # 取值去float # <class 'numpy.ndarray'> # [1. 2. 3.]
dtype类型
a = np.array([1, 2.0, 3],dtype=np.str) # <class 'numpy.ndarray'> # ['1' '2.0' '3'] # 其他类型 # np.int64 带符号的64位整数 # np.float32 标准双精度浮点数 # np.complex 显示为128位浮点数的复数 # np.bool 布尔值:True值和False值 # np.object Python对象 # np.string_ 固定长度字符串 # np.unicode_ 固定长度Unicode
copy参数
# copy参数 默认True a = np.array([1, '2', 3]) b = np.array(a, copy=True) c = np.array(a, copy=False) # 635743528800 # 635743684528 # 635743528800
初始化占位符
# 3行4列 a = np.zeros((3, 4)) # <class 'numpy.ndarray'> # [[0. 0. 0. 0.] # [0. 0. 0. 0.] # [0. 0. 0. 0.]] # 2行3列4纵 a = np.ones((2, 3, 4,2), dtype=np.int16) # <class 'numpy.ndarray'> # [[[1 1 1 1] # [1 1 1 1] # [1 1 1 1]] # # [[1 1 1 1] # [1 1 1 1] # [1 1 1 1]]] # 创建均匀间隔的数组(步进值) a = np.arange(10, 25, 5) # <class 'numpy.ndarray'> # [10 15 20] # 创建均匀间隔的数组(样本数) a = np.linspace(0, 2, 9) # <class 'numpy.ndarray'> # [0. 0.25 0.5 0.75 1. 1.25 1.5 1.75 2. ] # 创建常数数组 a = np.full((2,2),7) # <class 'numpy.ndarray'> # [[7 7] # [7 7]] # 创建2x2单位矩阵 a = np.eye(2) # <class 'numpy.ndarray'> # [[1. 0.] # [0. 1.]] # 创建随机值的数组 a = np.random.random((2,2)) # <class 'numpy.ndarray'> # [[0.43922179 0.48453874] # [0.753194 0.09264839]] # 创建空数组 a = np.empty((3,2)) # <class 'numpy.ndarray'> # [[1.39069238e-309 1.39069238e-309] # [1.39069238e-309 1.39069238e-309] # [1.39069238e-309 1.39069238e-309]]
输入输出
保存/读取
# 保存为npy文件 a = np.full((10,10),7) # 保存 np.save('my_array', a) # 读取 np.load('my_array.npy') # 保存文本文档 np.savetxt("myarray.txt", a, delimiter=",") # 读取 np.loadtxt("myarray.txt") # 读取excel np.genfromtxt("my_fle.csv", delimiter=',')
数组信息
a = np.zeros((3, 4)) # [[0. 0. 0. 0.] # [0. 0. 0. 0.] # [0. 0. 0. 0.]] # 数组形状,几行几列 print(a.shape) # (3, 4) # 数组长度 print(len(a)) # 3 # 几维数组 print(a.ndim) # 2 # 数组有多少元素 print(a.size) # 12 # 数据类型 print(a.dtype) # float64 # 数据类型的名字 print(a.dtype.name) # float64 # 数据类型转换 print(a.astype(int)) # [[0 0 0 0] # [0 0 0 0] # [0 0 0 0]]
索引、切片、比较
切片
import numpy as np matrix = np.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) # 取所有行的第2列 print(matrix[:,1]) # [10 25 40] # 取所有行的前1、2列 print(matrix[:,0:2]) # [[ 5 10] # [20 25] # [35 40]] # 取2、3行的前1、2列 print(matrix[1:3,0:2]) # [[20 25] # [35 40]]
比较
import numpy as np # 获取比较结果 matrix = np.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) print(matrix == 25) # [[False False False] # [False True False] # [False False False]] # 根据比较结果取值 vector = np.array([5, 10, 15, 20]) equal_to_ten = (vector == 10) print(equal_to_ten) print(vector[equal_to_ten]) # [False True False False] # [10] # 根据比较结果切片取值 matrix = np.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) second_column_25 = (matrix[:,1] == 25) print(second_column_25) print(matrix[second_column_25, :]) # [False True False] # [[20 25 30]] # 与操作 去比较结果 vector = np.array([5, 10, 15, 20]) equal_to_ten_and_five = (vector == 10) & (vector == 5) print(equal_to_ten_and_five) # [False False False False] # 或操作 去比较结果 vector = np.array([5, 10, 15, 20]) equal_to_ten_or_five = (vector == 10) | (vector == 5) print(equal_to_ten_or_five) # [ True True False False] # 根据比较结果赋值 vector = np.array([5, 10, 15, 20]) equal_to_ten_or_five = (vector == 10) | (vector == 5) vector[equal_to_ten_or_five] = 50 print(vector) # [50 50 15 20]
数组计算
聚合函数
# 数据汇总 vector = np.array([5, 10, 15, 20]) print(vector.sum()) # 50 # 二维矩阵汇总 matrix = np.array([ [5, 10, 15], [20, 25, 30], [35, 40, 45] ]) print(matrix.sum()) # 225 # 二维横向汇总 print(matrix.sum(axis=1)) # [ 30 75 120] # 二维竖向汇总 print(matrix.sum(axis=0)) # [60 75 90]
数组运算
a = np.array([20, 30, 40, 50]) b = np.arange(4) print(a) print(b) # [20 30 40 50] # [0 1 2 3] # 减 c = a - b print(c) # [20 29 38 47] # 加 c = a + b print(c) # [20 31 42 53] # 乘 c = a * b print(c) # [ 0 30 80 150] # 除 c = b / a print(c) # [0. 0.03333333 0.05 0.06 ] # 2次幂 print(b**2) # [0 1 4 9] # 点积 https://www.jianshu.com/p/482abac8798c A = np.array( [[1,1], [0,1]] ) B = np.array( [[2,0], [3,4]] ) print(A) print(B) print(A.dot(B)) print(np.dot(A, B)) # [[1 1] # [0 1]] # [[2 0] # [3 4]] # [[5 4] # [3 4]] # [[5 4] # [3 4]] import numpy as np B = np.arange(3) print(B) # [0 1 2] # 幂 print(np.exp(B)) # [1. 2.71828183 7.3890561 ] # 平方根 print(np.sqrt(B)) # [0. 1. 1.41421356]
数组操作
import numpy as np # floor向下取整 a = np.floor(10*np.random.random((3,4))) print(a) # [[1. 5. 3. 3.] # [3. 3. 2. 6.] # [4. 9. 5. 3.]] # ravel合为一行 print(a.ravel()) # [1. 5. 3. 3. 3. 3. 2. 6. 4. 9. 5. 3.] # 更换shape形状 a.shape = (6, 2) print(a) # [[1. 5.] # [3. 3.] # [3. 3.] # [2. 6.] # [4. 9.] # [5. 3.]] # 横竖转换 print(a.T) # [[1. 3. 3. 2. 4. 5.] # [5. 3. 3. 6. 9. 3.]] # -1 默认值 print(a.reshape(3,-1)) # [[1. 5. 3. 3.] # [3. 3. 2. 6.] # [4. 9. 5. 3.]] # 拼接 a = np.floor(10*np.random.random((2,2))) b = np.floor(10*np.random.random((2,2))) print(a) # [[5. 7.] # [2. 9.]] print(b) # [[7. 4.] # [7. 7.]] print(np.hstack((a,b))) # 横向拼接 # [[5. 7. 7. 4.] # [2. 9. 7. 7.]] print(np.vstack((a,b))) # 纵向拼接 # [[5. 7.] # [2. 9.] # [7. 4.] # [7. 7.]] # 分割 a = np.floor(10*np.random.random((2,12))) print(a) # [[4. 7. 8. 2. 0. 1. 5. 7. 1. 2. 1. 2.] # [5. 8. 9. 2. 5. 5. 8. 9. 5. 4. 7. 8.]] print(np.hsplit(a,3)) # 横向切割3份 # [array([[4., 7., 8., 2.], # [5., 8., 9., 2.]]), array([[0., 1., 5., 7.], # [5., 5., 8., 9.]]), array([[1., 2., 1., 2.], # [5., 4., 7., 8.]])] print(np.vsplit(a,2)) # 纵向切割3份 # [array([[4., 7., 8., 2., 0., 1., 5., 7., 1., 2., 1., 2.]]), array([[5., 8., 9., 2., 5., 5., 8., 9., 5., 4., 7., 8.]])] print(np.hsplit(a,(3,4))) # 横向切割3,4 # [array([[9., 3., 0.], # [1., 0., 4.]]), array([[7.], # [5.]]), array([[8., 5., 7., 7., 4., 9., 8., 2.], # [6., 7., 6., 4., 9., 5., 9., 3.]])]
拷贝
# 赋值 a = np.arange(12) b = a # a and b are two names for the same ndarray object # b is a # True b.shape = 3,4 print(a.shape) print(id(a)) print(id(b)) # (3, 4) # 115753432 # 115753432 # 浅拷贝 c = a.view() # c is a # Flase c.shape = 2,6 #print a.shape c[0,4] = 1234 print(a) # [[ 0 1 2 3] # [1234 5 6 7] # [ 8 9 10 11]] # 深拷贝 d = a.copy() # d is a # Flase d[0,0] = 9999 print(d) print(a) # [[9999 1 2 3] # [1234 5 6 7] # [ 8 9 10 11]] # [[ 0 1 2 3] # [1234 5 6 7] # [ 8 9 10 11]]