zoukankan      html  css  js  c++  java
  • POJ 3616 Milking Time(简单DP)

    Milking Time

    Time Limit: 1000MS

     

    Memory Limit: 65536K

    Total Submissions: 3055

     

    Accepted: 1281

    Description

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that she decides to schedule her next N (1 ≤ N ≤ 1,000,000) hours (conveniently labeled 0..N-1) so that she produces as much milk as possible.

    Farmer John has a list of M (1 ≤ M ≤ 1,000) possibly overlapping intervals in which he is available for milking. Each interval i has a starting hour (0 ≤ starting_houri ≤ N), an ending hour (starting_houri < ending_houri ≤N), and a corresponding efficiency (1 ≤ efficiencyi ≤ 1,000,000) which indicates how many gallons of milk that he can get out of Bessie in that interval. Farmer John starts and stops milking at the beginning of the starting hour and ending hour, respectively. When being milked, Bessie must be milked through an entire interval.

    Even Bessie has her limitations, though. After being milked during any interval, she must rest R (1 ≤ R ≤ N) hours before she can start milking again. Given Farmer Johns list of intervals, determine the maximum amount of milk that Bessie can produce in the N hours.

    Input

    * Line 1: Three space-separated integers: NM, and R
    * Lines 2..M+1: Line i+1 describes FJ's ith milking interval withthree space-separated integers: starting_houri , ending_houri , and efficiencyi

    Output

    * Line 1: The maximum number of gallons of milk that Bessie can product in the N hours

    Sample Input

    12 4 2

    1 2 8

    10 12 19

    3 6 24

    7 10 31

    Sample Output

    43

    Source

    USACO 2007 November Silver

     解题报告:这道题就是怎么安排牛的顺序才能效率最大,如果没有效率的话,感觉有点像活动安排,但是加了效率,就得用数组记录记录当前的状态了,自然想到了用DP,先按活动的结束时间从小到大排序,再动态规划即可!

    代码如下:

    #include <iostream>
    #include <cstdio>
    #include <cstring>
    #include <cstdlib>
    #include <algorithm>
    #define Max(a, b)(a > b ? a : b)
    using namespace std;
    const int MAX = 1010;
    int dp[MAX];
    struct Cow//记录牛的信息
    {
        int start;
        int end;
        int eff;
    }cow[MAX];
    int cmp(const void *a, const void *b)//结构体一级排序,按结束时间从小到大排序
    {
        return (*(Cow *)a).end - (*(Cow *)b).end;
    }
    int N, M, R;
    int main()
    {
        int i, j;
        scanf("%d%d%d", &N, &M, &R);
        for (i =0; i < M; ++i)
        {
            scanf("%d%d%d", &cow[i].start, &cow[i].end, &cow[i].eff);
        }
        qsort(cow, M, sizeof(cow[0]), cmp);
        for (i = 0; i < M; ++i)//初始化
        {
            dp[i] = cow[i].eff;
        }
        for (i = 0; i < M; ++i)
        {
            for (j = i + 1; j < M; ++j)
            {
                if (cow[j].start >= cow[i].end + R)
                {
                    dp[j] = Max(dp[i] + cow[j].eff, dp[j]);
                }
            }
        }
        int ans = 0;
        for (i = 0; i < M; ++i)//找到最大的
        {
            if (ans < dp[i])
            {
                ans = dp[i];
            }
        }
        printf("%d\n", ans);
        return 0;
    }
            
  • 相关阅读:
    个人作业二-举例分析流程图与活动图的区别与联系
    四则运算
    实验四 决策树算法及应用
    实验三 朴素贝叶斯算法及应用
    实验二 K-近邻算法及应用
    实验一 感知器及其应用
    实验三 面向对象分析与设计
    实验二 结构化分析与设计
    实验一 软件开发文档与工具的安装与使用
    ATM管理系统
  • 原文地址:https://www.cnblogs.com/lidaojian/p/2495048.html
Copyright © 2011-2022 走看看