zoukankan      html  css  js  c++  java
  • 浅谈贪心与动归

    浅谈贪心与动归

    初学时 想必都会对两者的认识有一些混淆
    概念性质的就不赘述了
    来谈谈我在刷题过程中对两者的见解(诚心接受各位的指正)
    从搜索到贪心——求解算法的优化 这篇文章非常值得一看
    P1478 陶陶摘苹果(升级版) 对应的oj题目

    对比

    贪心像是动归的一个特例
    动归的核心在于:状态转移,找出那个转移方程
    贪心的核心在于:局部选取最优解,并且选取的贪心策略不会影响到其他的状态

    用01背包举个例子

    在n件物品取出若干件放在空间为c的背包里,每件物品的体积为w1 w2...wn,与之相对应的价值为v1 v2...vn,最终使背包所装物品的总价值最高
    代码如下,基本上大家都会写

    int dp[i][j]; //dp[i][j] 表示取到第i个物品,背包容量为j
    int pack01(int v[],int w[],int n,int c){ //value weight number capacity 
        for(int i=1;i<=n;++i)
            for(int j=1;j<=c;++j){
                if(w[i]>j) dp[i][j]=dp[i-1][j];
                else dp[i][j]=max(dp[i-1][j],dp[i-1][j-w[i]]+v[i]);
            }
    }
    空间优化 一维
    for(int i=1;i<=n;i++)
        for(int j=c;j>=1;j--){ //注意从后往前
            if(w[i]<=j){ //二维变一维
                dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
            }
        }
    更简洁
    for(int i=1;i<=n;i++)
        for(int j=c;j>=w[i];j--){
            dp[j]=max(dp[j],dp[j-w[i]]+v[i]);
        }
    

    但如果将v1 v2...vn这些每个物品对应的价值都变成1(v1=v2=...=vn=1)
    这样一来,每个物品的价值都相同。无论你有多重,你的价值和别人都一样
    很显然,我们只要把物品的重量进行排序,先拿轻的再拿重的,结果必然最优

    动归加上一个特例 就这样成为了贪心可解决的题目
    并且时间复杂度直接下降到排序的O(nlogn)

    再来举个更接地气的栗子

    找纸币

    基本上每个国家设计的货币都是符合贪心原则的
    我国的纸币面额分别为:100元、50元、20元、10元、5元、2元、1元
    当需要找钱给别人时,先找大面值的纸币再找小面值的,最后一定是纸币数量最少的

    但如果面额是1元、5元、11元的纸币
    当你找别人15元时,按照贪心规则,找的是一张11元和4张1元的,一共5张
    而正确答案显而易见是3张5元的,一共3张
    这就不符合贪心策略了,这时怎么来找到最少的?这就需要用到动归了

    这其实是完全背包(每件物品可以取多次)的模板
    必须把背包装满,即正好找出零钱,不多也不少(会影响初始化,文末见背包九讲)
    每个物品价值 v[i]=1,并且不是总价值最大,而是纸币数量最小 max->min

    int m[4]={0,1,5,11};
    int dp[5][20]; //dp[i][j] i表示纸币种类,j表示找回的零钱
    //转移方程 dp[i][j]=min(dp[i-1][j],dp[i][j-m[i]]+1);
    #define inf 10000 //若背包则是-∞
    //初始化
    for(int i=0;i<=3;++i)
    	for(int j=0;j<=15;++j){
    		if(j==0) dp[i][j]=0;
    		else dp[i][j]=inf;
    	}
    
    for(int i=1;i<=3;++i){
    	for(int j=0;j<=15;++j){
    		if(j>=m[i]) dp[i][j]=min(dp[i-1][j],dp[i][j-m[i]]+1);
    		else dp[i][j]=dp[i-1][j];
    		//请注意转移方程中dp[i][j-m[i]]+1里的[i]
    		//而01背包是[i-1],这是物品能否取多次的关键所在
    	}
    }
    cout<<dp[3][15];
    

    空间优化

    int m[4]={0,1,5,11};
    int dp[20];
    #define inf 10000
    for(int j=0;j<=15;++j){
        if(j==0) dp[j]=0;
        else dp[j]=inf;
    }
    for(int i=1;i<=3;++i){
        for(int j=m[i];j<=15;++j){
            dp[j]=min(dp[j],dp[j-m[i]]+1);
        }
    }
    cout<<dp[15];
    

    如果是第一种问法,要求恰好装满背包,那么在初始化时除了 F[0] 为 0 ,其它
    F[1..V ] 均设为 −∞ ,这样就可以保证最终得到的 F[V ] 是一种恰好装满背包的最优解。
    如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将 F[0..V ]
    全部设为 0 。
    这是为什么呢?可以这样理解:初始化的 F 数组事实上就是在没有任何物品可以放
    入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为 0 的背包可以在什
    么也不装且价值为 0 的情况下被“恰好装满”,其它容量的背包均没有合法的解,属于
    未定义的状态,应该被赋值为 -∞ 了。如果背包并非必须被装满,那么任何容量的背包
    都有一个合法解“什么都不装”,这个解的价值为 0 ,所以初始时状态的值也就全部为 0
    了。
    取自《背包问题九讲》1.4 初始化的细节问题

  • 相关阅读:
    使用MingGW-w64 Build Script 3.6.7搭建ffmpeg编译环境
    ffmpeg精简编译
    CListCtrl死锁的问题
    VC程序禁用提示框
    rtmp协议分析
    [置顶] zabbix发送告警
    [置顶] 个人微信号发送zabbix告警信息
    [置顶] 一个简单好用的zabbix告警信息发送工具
    [置顶] zabbix告警信息-lykchat信息发送系统
    模拟登陆web微信的流程和参数细节
  • 原文地址:https://www.cnblogs.com/lidasu/p/10957495.html
Copyright © 2011-2022 走看看