zoukankan      html  css  js  c++  java
  • poj 1556 The Doors(线段相交,最短路)

     
    The Doors
    Time Limit: 1000MS   Memory Limit: 10000K
    Total Submissions: 7430   Accepted: 2915

    Description

    You are to find the length of the shortest path through a chamber containing obstructing walls. The chamber will always have sides at x = 0, x = 10, y = 0, and y = 10. The initial and final points of the path are always (0, 5) and (10, 5). There will also be from 0 to 18 vertical walls inside the chamber, each with two doorways. The figure below illustrates such a chamber and also shows the path of minimal length.

    Input

    The input data for the illustrated chamber would appear as follows.

    2
    4 2 7 8 9
    7 3 4.5 6 7

    The first line contains the number of interior walls. Then there is a line for each such wall, containing five real numbers. The first number is the x coordinate of the wall (0 < x < 10), and the remaining four are the y coordinates of the ends of the doorways in that wall. The x coordinates of the walls are in increasing order, and within each line the y coordinates are in increasing order. The input file will contain at least one such set of data. The end of the data comes when the number of walls is -1.

    Output

    The output should contain one line of output for each chamber. The line should contain the minimal path length rounded to two decimal places past the decimal point, and always showing the two decimal places past the decimal point. The line should contain no blanks.

    Sample Input

    1
    5 4 6 7 8
    2
    4 2 7 8 9
    7 3 4.5 6 7
    -1

    Sample Output

    10.00
    10.06

    Source

    【思路】

      枚举所有点,如果不与竖边相交则连边,做最短路即可。

    【代码】

     1 #include<cmath>
     2 #include<cstdio>
     3 #include<cstring>
     4 #include<algorithm>
     5 #define FOR(a,b,c) for(int a=(b);a<=(c);a++)
     6 using namespace std;
     7 
     8 const int N = 300+10;
     9 const double INF = 1e9;
    10 const double eps = 1e-8;
    11 
    12 int dcmp(double x) {
    13     if(x<eps) return 0; else return x<0? -1:1;
    14 }
    15 
    16 struct Pt {
    17     double x,y;
    18     Pt(double x=0,double y=0):x(x),y(y) {};
    19 };
    20 struct Seg { Pt a1,a2; };
    21 typedef Pt vec;
    22 
    23 vec operator - (Pt A,Pt B) { return vec(A.x-B.x,A.y-B.y); }
    24 bool operator != (Pt A,Pt B) {
    25     if(dcmp(A.x-B.x)==0 && dcmp(A.y-B.y)==0) return 0;
    26     else return 1; 
    27 }
    28 
    29 double cross(Pt A,Pt B) { return A.x*B.y-A.y*B.x; }
    30 
    31 bool SegInter(Pt s1, Pt e1, Pt s2, Pt e2) {
    32     if( 
    33         cross(e1-s1,s2-s1) * cross(e1-s1,e2-s1) <= 0 &&
    34         cross(e2-s2,s1-s2) * cross(e2-s2,e1-s2) <= 0 
    35       ) return true;
    36     return false;
    37 }
    38 double dist(Pt a,Pt b) {
    39     return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
    40 }
    41 double f[N][N];
    42 Seg L[N]; int lc;
    43 Pt P[N]; int pc;
    44 int n;
    45 
    46 int main() {
    47     while(scanf("%d",&n)==1 && n>0) {
    48         pc=lc=0;
    49         FOR(i,1,n) {
    50             double x,y1,y2,y3,y4;
    51             scanf("%lf%lf%lf%lf%lf",&x,&y1,&y2,&y3,&y4);
    52             L[++lc]=(Seg) {Pt(x,0),Pt(x,y1)};
    53             L[++lc]=(Seg) {Pt(x,y2),Pt(x,y3)};
    54             L[++lc]=(Seg) {Pt(x,y4),Pt(x,10)};
    55             P[++pc]=Pt(x,y1) , P[++pc]=Pt(x,y2);
    56             P[++pc]=Pt(x,y3) , P[++pc]=Pt(x,y4);
    57         }
    58         P[++pc]=Pt(0,5), P[++pc]=Pt(10,5);
    59         FOR(i,1,pc) FOR(j,1,pc) f[i][j]=INF;
    60         FOR(i,1,pc) FOR(j,i+1,pc) {
    61             bool flag=1;
    62             FOR(k,1,lc)
    63             if(SegInter(P[i],P[j],L[k].a1,L[k].a2))
    64                 { flag=0; break; }
    65             if(flag)
    66                 f[i][j]=f[j][i]=dist(P[i],P[j]);
    67         }
    68         FOR(i,1,n) {
    69             FOR(j,i+1,n) if(f[i][j]!=INF)
    70                 printf("%d,%d : %.2lf
    ",i,j,f[i][j]);
    71         }
    72         FOR(k,1,pc) FOR(i,1,pc) FOR(j,1,pc)
    73             f[i][j]=min(f[i][j],f[i][k]+f[k][j]);
    74         printf("%.2lf
    ",f[pc-1][pc]);
    75     }
    76     return 0;
    77 }
    View Code
  • 相关阅读:
    MySQL Replication主从复制
    使用Amoeba 实现MySQL DB 读写分离
    Amoeba For MySQL入门:实现数据库水平切分
    11条理由告诉你,为什么你的网站不卖座
    很有用的观察者设计模式
    Apache + Tomcat集群配置详解 (1)
    Nginx+tomcat配置负载均衡
    JSON-RPC轻量级远程调用协议介绍及使用
    nginx的upstream目前支持5种方式的分配
    rpc远程过程协议调用
  • 原文地址:https://www.cnblogs.com/lidaxin/p/5180548.html
Copyright © 2011-2022 走看看