zoukankan      html  css  js  c++  java
  • spoj 375 Query on a tree(树链剖分,线段树)

     
    Time Limit: 851MS   Memory Limit: 1572864KB   64bit IO Format: %lld & %llu

    Status

    Description

    You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.

    We will ask you to perfrom some instructions of the following form:

    • CHANGE i ti : change the cost of the i-th edge to ti
      or
    • QUERY a b : ask for the maximum edge cost on the path from node a to node b

    Input

    The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.

    For each test case:

    • In the first line there is an integer N (N <= 10000),
    • In the next N-1 lines, the i-th line describes the i-th edge: a line with three integers a b c denotes an edge between a, b of cost c (c <= 1000000),
    • The next lines contain instructions "CHANGE i ti" or "QUERY a b",
    • The end of each test case is signified by the string "DONE".

    There is one blank line between successive tests.

    Output

    For each "QUERY" operation, write one integer representing its result.

    Example

    Input:
    1
    
    3
    1 2 1
    2 3 2
    QUERY 1 2
    CHANGE 1 3
    QUERY 1 2
    DONE
    
    Output:
    1
    3

    【思路】

           树链剖分。

           划分轻重链,线段树维护。

           这里有个知识入门:http://blog.sina.com.cn/s/blog_6974c8b20100zc61.html

    【代码】

    
    
      1 #include<cstdio>
      2 #include<vector>
      3 #include<cstring>
      4 #include<algorithm>
      5 #include<iostream>
      6 using namespace std;
      7 
      8 const int N = 20000+10;
      9  
     10 struct Edge { int u,v,w; };
     11 vector<int> G[N];
     12 vector<Edge> es;
     13 int n,z,root,d[N][3];
     14 int fa[N],siz[N],dep[N],son[N],w[N],top[N];
     15 //fa为父节点 siz为子树大小 dep为节点深度 
     16 //son代表重儿子 w为u与fa[u]在线段树中的位置 top代表所属重链的顶端 
     17 //z为线段树大小 
     18 
     19 void adde(int u,int v,int w) {
     20     es.push_back((Edge){u,v,w});
     21     int m=es.size();
     22     G[u].push_back(m-1);
     23 }
     24 
     25 void dfs(int u) {            //->siz[] son[] fa[] 
     26     siz[u]=1; son[u]=0;
     27     for(int i=0;i<G[u].size();i++) {
     28         int v=es[G[u][i]].v;
     29         if(v!=fa[u]) {
     30             fa[v]=u;
     31             dep[v]=dep[u]+1;
     32             dfs(v);
     33             if(siz[v]>siz[son[u]]) son[u]=v;
     34             siz[u]+=siz[v];
     35         }
     36     }
     37 }
     38 void build_tree(int u,int tp) {    //son[] -> top[] w[]
     39     w[u]=++z; top[u]=tp;
     40     if(son[u]) build_tree(son[u],top[u]);
     41     for(int i=0;i<G[u].size();i++) {
     42         int v=es[G[u][i]].v;
     43         if(v!=son[u] && v!=fa[u]) build_tree(v,v); 
     44     }
     45 }
     46 
     47 int tree[N];
     48 void update(int u,int L,int R,int loc,int x) {
     49     if(loc<L || R<loc) return ;
     50     if(L==R) { tree[u]=x; return ; }
     51     int M=L+(R-L)/2 , lc=u*2,rc=lc+1;
     52     update(lc,L,M,loc,x);
     53     update(rc,M+1,R,loc,x);
     54     tree[u]=max(tree[lc],tree[rc]);
     55 }
     56 int query(int u,int L,int R,int l,int r) {
     57     if(R<l || L>r) return 0;
     58     if(l<=L && R<=r) return tree[u];
     59     int M=L+(R-L)/2;
     60     return max(query(u*2,L,M,l,r),query(u*2+1,M+1,R,l,r));
     61 }
     62 int find(int u,int v) {
     63     int f1=top[u] , f2=top[v] , ans=0;
     64     while(f1!=f2) {                                //直到移动到同一重链 
     65         if(dep[f1]<dep[f2]) 
     66             swap(f1,f2) , swap(u,v);
     67         ans=max(ans,query(1,1,z,w[f1],w[u]));    //在重链上移动同时统计 
     68         u=fa[f1] , f1=top[u];
     69     }
     70     if(u==v) return ans;
     71     if(dep[u]>dep[v]) swap(u,v);
     72     return max(ans,query(1,1,z,w[son[u]],w[v])); //uv之间统计 
     73 }
     74 
     75 void init() {
     76     scanf("%d",&n);
     77     es.clear();
     78     for(int i=0;i<=n;i++) G[i].clear();
     79     root=(n+1)/2;
     80     fa[root]=dep[root]=z=0;
     81     memset(siz,0,sizeof(siz));
     82     memset(tree,0,sizeof(tree));
     83     int u,v,c;
     84     for(int i=1;i<n;i++) {
     85         scanf("%d%d%d",&u,&v,&c);
     86         d[i][0]=u , d[i][1]=v , d[i][2]=c;
     87         adde(u,v,c) , adde(v,u,c);
     88     }
     89     dfs(root);
     90     build_tree(root,root);
     91     for(int i=1;i<n;i++) {
     92         if(dep[d[i][0]]>dep[d[i][1]]) swap(d[i][0],d[i][1]);
     93         update(1,1,z,w[d[i][1]],d[i][2]);
     94     }
     95 }
     96 void solve() {
     97     char s[20];
     98     int u,v;
     99     while(scanf("%s",s)==1 && s[0]!='D') {
    100         scanf("%d%d",&u,&v);
    101         if(s[0]=='Q') printf("%d
    ",find(u,v));
    102         else update(1,1,z,w[d[u][1]],v);
    103     }
    104 }
    105 
    106 int main() {
    107     int T;
    108     scanf("%d",&T);
    109     while(T--) {
    110         init();
    111         solve();
    112     }
    113     return 0;
    114 }
    
    
    

  • 相关阅读:
    Ubuntu下基于u-boot搭建qemu的vexpress环境
    linux从head.s到start_kernelstart_kernel之---内核重定位后分析
    linux从head.s到start_kernelstart_kernel之---内核解压到重定位分析
    Jupyter Notebook介绍、安装及使用教程
    python基于SMTP发送邮件(qq邮箱)
    python正则表达式多次提取数据(一个规则提取多组数据)
    python正则表达式提取中文
    找到任务栏图标广告的源头
    1. Visio Web 形状
    Python GUI之tkinter窗口视窗教程大集合(看这篇就够了)
  • 原文地址:https://www.cnblogs.com/lidaxin/p/5184627.html
Copyright © 2011-2022 走看看