zoukankan      html  css  js  c++  java
  • 【POJ 2104】K-th Number

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

     

    题目大意:

      求区间第k小。

     

    分析:

      可持久化线段树,按序列中的数的顺序来创建新版本,每个数在线段树中所在的位置为数在所有数中第几小。

     

    代码:

     1 #include <cstdio>
     2 #include <algorithm>
     3 
     4 const int Max_N = 2000000;
     5 
     6 struct SegmentTree
     7 {
     8     int Child[2];
     9     int Count, Number;
    10 } tree[Max_N];
    11 
    12 int Root[Max_N], treeSize;
    13 int num[Max_N], id[Max_N], back[Max_N];
    14 int n, m, qi, qj, qk;
    15 
    16 #define MID ((left + right) >> 1)
    17 
    18 int Build (int left, int right)
    19 {
    20     int i = ++treeSize;
    21     tree[i].Count = 0;
    22     if (left < right)
    23     {
    24         tree[i].Child[0] = Build (left, MID);
    25         tree[i].Child[1] = Build (MID + 1, right);
    26     }
    27     return i;
    28 }
    29 
    30 int Modify (int left, int right, int pos, int key, int pre)
    31 {
    32     int i = ++treeSize;
    33     if (left < right)
    34     {
    35         int ch = (pos <= MID) ? 0 : 1;
    36         tree[i].Child[!ch] = tree[pre].Child[!ch];
    37         ch ? left = MID + 1 : right = MID;
    38         tree[i].Child[ch] = Modify (left, right, pos, key, tree[pre].Child[ch]);
    39         tree[i].Count = tree[tree[i].Child[0]].Count + tree[tree[i].Child[1]].Count;
    40     }else tree[i].Number = key, tree[i].Count = 1;
    41     return i;
    42 }
    43 
    44 #define LEFTSIZE (tree[tree[late].Child[0]].Count - tree[tree[early].Child[0]].Count)
    45 
    46 int Query (int left, int right, int early, int late, int k)
    47 {
    48     if (left == right) return tree[late].Number;
    49     int ch = (k <= LEFTSIZE) ? 0 : 1;
    50     ch ? left = MID + 1 : right = MID;
    51     return Query (left, right, tree[early].Child[ch], tree[late].Child[ch], ch ? k - LEFTSIZE : k);
    52 }
    53 
    54 bool cmp (int a, int b)
    55 {
    56     return num[a] < num[b];
    57 }
    58 
    59 int main ()
    60 {
    61     scanf ("%d %d", &n, &m);
    62     for (int i = 1; i <= n; i++)
    63         scanf ("%d", &num[i]), id[i] = i;
    64     std::sort (id + 1, id + n + 1, cmp);
    65     Root[0] = Build (1, n);
    66     for (int i = 1; i <= n; i++)
    67         back[id[i]] = i;
    68     for (int i = 1; i <= n; i++)
    69         Root[i] = Modify (1, n, back[i], num[i], Root[i - 1]);
    70     for (int i = 0; i < m; i++)
    71     {
    72         scanf ("%d %d %d", &qi, &qj, &qk);
    73         printf ("%d
    ", Query (1, n, Root[qi - 1], Root[qj], qk));
    74     }
    75 }
    
    
  • 相关阅读:
    jQuery选择器---层次选择器总结
    jQuery选择器---基本选择器总结
    jQuery手风琴
    jQuery(ajax)的使用方法
    css 3d 基础知识
    Android Dynamic Action(动态Action)—像访问网页一样地访问Activity
    笨鸟不乖 是这么设计Android项目架构的
    Android Auto Scroll ViewPager (Smooth)
    [原创] 在线音乐API的研究 (Part 2.1)
    [原创] 浅谈开源项目Android-Universal-Image-Loader(Part 3.1)
  • 原文地址:https://www.cnblogs.com/lightning34/p/4388229.html
Copyright © 2011-2022 走看看