zoukankan      html  css  js  c++  java
  • 【POJ 2104】K-th Number

    Description

    You are working for Macrohard company in data structures department. After failing your previous task about key insertion you were asked to write a new data structure that would be able to return quickly k-th order statistics in the array segment. 
    That is, given an array a[1...n] of different integer numbers, your program must answer a series of questions Q(i, j, k) in the form: "What would be the k-th number in a[i...j] segment, if this segment was sorted?" 
    For example, consider the array a = (1, 5, 2, 6, 3, 7, 4). Let the question be Q(2, 5, 3). The segment a[2...5] is (5, 2, 6, 3). If we sort this segment, we get (2, 3, 5, 6), the third number is 5, and therefore the answer to the question is 5.

    Input

    The first line of the input file contains n --- the size of the array, and m --- the number of questions to answer (1 <= n <= 100 000, 1 <= m <= 5 000). 
    The second line contains n different integer numbers not exceeding 109 by their absolute values --- the array for which the answers should be given. 
    The following m lines contain question descriptions, each description consists of three numbers: i, j, and k (1 <= i <= j <= n, 1 <= k <= j - i + 1) and represents the question Q(i, j, k).

    Output

    For each question output the answer to it --- the k-th number in sorted a[i...j] segment.

    Sample Input

    7 3
    1 5 2 6 3 7 4
    2 5 3
    4 4 1
    1 7 3

    Sample Output

    5
    6
    3

     

    题目大意:

      求区间第k小。

     

    分析:

      可持久化线段树,按序列中的数的顺序来创建新版本,每个数在线段树中所在的位置为数在所有数中第几小。

     

    代码:

     1 #include <cstdio>
     2 #include <algorithm>
     3 
     4 const int Max_N = 2000000;
     5 
     6 struct SegmentTree
     7 {
     8     int Child[2];
     9     int Count, Number;
    10 } tree[Max_N];
    11 
    12 int Root[Max_N], treeSize;
    13 int num[Max_N], id[Max_N], back[Max_N];
    14 int n, m, qi, qj, qk;
    15 
    16 #define MID ((left + right) >> 1)
    17 
    18 int Build (int left, int right)
    19 {
    20     int i = ++treeSize;
    21     tree[i].Count = 0;
    22     if (left < right)
    23     {
    24         tree[i].Child[0] = Build (left, MID);
    25         tree[i].Child[1] = Build (MID + 1, right);
    26     }
    27     return i;
    28 }
    29 
    30 int Modify (int left, int right, int pos, int key, int pre)
    31 {
    32     int i = ++treeSize;
    33     if (left < right)
    34     {
    35         int ch = (pos <= MID) ? 0 : 1;
    36         tree[i].Child[!ch] = tree[pre].Child[!ch];
    37         ch ? left = MID + 1 : right = MID;
    38         tree[i].Child[ch] = Modify (left, right, pos, key, tree[pre].Child[ch]);
    39         tree[i].Count = tree[tree[i].Child[0]].Count + tree[tree[i].Child[1]].Count;
    40     }else tree[i].Number = key, tree[i].Count = 1;
    41     return i;
    42 }
    43 
    44 #define LEFTSIZE (tree[tree[late].Child[0]].Count - tree[tree[early].Child[0]].Count)
    45 
    46 int Query (int left, int right, int early, int late, int k)
    47 {
    48     if (left == right) return tree[late].Number;
    49     int ch = (k <= LEFTSIZE) ? 0 : 1;
    50     ch ? left = MID + 1 : right = MID;
    51     return Query (left, right, tree[early].Child[ch], tree[late].Child[ch], ch ? k - LEFTSIZE : k);
    52 }
    53 
    54 bool cmp (int a, int b)
    55 {
    56     return num[a] < num[b];
    57 }
    58 
    59 int main ()
    60 {
    61     scanf ("%d %d", &n, &m);
    62     for (int i = 1; i <= n; i++)
    63         scanf ("%d", &num[i]), id[i] = i;
    64     std::sort (id + 1, id + n + 1, cmp);
    65     Root[0] = Build (1, n);
    66     for (int i = 1; i <= n; i++)
    67         back[id[i]] = i;
    68     for (int i = 1; i <= n; i++)
    69         Root[i] = Modify (1, n, back[i], num[i], Root[i - 1]);
    70     for (int i = 0; i < m; i++)
    71     {
    72         scanf ("%d %d %d", &qi, &qj, &qk);
    73         printf ("%d
    ", Query (1, n, Root[qi - 1], Root[qj], qk));
    74     }
    75 }
    
    
  • 相关阅读:
    经典线程同步总结 关键段 事件 互斥量 信号量
    寄存器与缓存的区别
    自动变量
    进程的阻塞和挂起的区别
    经典线程同步 信号量Semaphore
    热门智力题 过桥问题和倒水问题
    经典线程同步 互斥量Mutex
    解决面试题的思路
    java.util.LinkedHashMap cannot be cast to
    E11000 duplicate key error index
  • 原文地址:https://www.cnblogs.com/lightning34/p/4388229.html
Copyright © 2011-2022 走看看